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A B S T R A C T

The use of structured light in Rydberg gases opens up new possibil-

ities for investigating optical nonlinearities. In order to create struc-

tured light, a spatial light modulator (SLM) is used to imprint phase

patterns onto a light beam, which modulates the intensity of light in

the Fourier plane. First, the phase patterns are computed using en-

hanced iterative Fourier transform algorithms. Second, these phase

patterns are tested in an experimental setup. In spite of the simula-

tions being highly accurate, optical aberrations have to be accounted

for. The corrective Shack-Hartmann algorithm is implemented to cor-

rect these aberrations, and additional noise sources are identified. My

thesis investigates these two central aspects. Further considerations

that might be used to optimise the setup subsequently to this work

are presented.

Z U S A M M E N FA S S U N G

Die Verwendung von strukturiertem Licht in Rydberg Gasen eröffnet

neue Möglichkeiten für die Untersuchung optischer Nichtlinearitäten.

Zu diesem Zwecke benutzen wir einen räumlichen Lichtmodulator,

welcher die Phase von Licht und somit in der Fourierebene die Inten-

sität modulieren kann. Zunächst werden die Phasenverteilungen zur

Manipulation des Lichts mittels iterativer Fourier-Transformations Al-

gorithmen berechnet. Des Weiteren müssen diese Phasenverteilun-

gen in einem optischen Aufbau getestet werden, da Störungen im

optischen Aufbau die feinstrukturierten Intensitätsverteilungen bein-

trächtigen. Der Shack-Hartmann Algorithmus wird implementiert um

diese Aberrationen zu korrigieren, außerdem werden weitere Fehler-

quellen identifiziert. Meine Arbeit beschäftigt sich mit diesen zentra-

len Aspekten zur Erzeugung von strukturiertem Licht und beschreibt

über das praktisch Umgesetzte hinaus eine Reihe von notwendigen

Maßnahmen um die Qualität der Intensitätsverteilungen weiter zu

verbessern.
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1
I N T R O D U C T I O N

The development of quantum mechanics at the beginning of the last

century can be considered a paradigm shift in science as coined by

Kuhn [1]. While the theory of quantum mechanics relentlessly con-

tinued its triumph, the field of Rydberg atoms emerged as a vast

playground for physicists to test the theory, its limits and how to ex-

tend it. Due to their high principal quantum number, Rydberg atoms

have a variety of intriguing and extreme properties, namely an ex-

treme controllability by external fields, strong long-range interactions

and long lifetimes that opened a diverse field of research topics [2]:

Ranging from ultra-long range molecules, investigations of few- and

many-body physics, quantum information theory and phenomena of

quantum optics, the research potential is far from being exhausted

and the pace of developments is continuously increasing. Concern-

ing quantum optics, a three-level system like a Rydberg gas can be

used as a medium where, under appropriate conditions, the phe-

nomenon of Electromagnetically Induced Transparency (EIT) can be

observed, meaning that light will be able to traverse an otherwise

opaque medium. This effect can be used to investigate phenomena

of nonlinear optics. The Rydberg group at the Physikalisches Institut

has focused its research on this nonlinear behaviour and the latest ef-

forts have been dedicated to enhance optical nonlinearities with EIT

in a Rydberg gas [3]. The latest proposal to further explore optical

nonlinearities consists of measuring the response of a Rydberg gas to

spatially resolved light. For reconstruction of the nonlinearity of the

medium light patterns with an adjustable periodicity are required.

But how can light actually be shaped?

For centuries humankind perfected the use of tools like lenses, prisms,

apertures and mirrors to guide and analyse light, although it was

only the invention of the laser [4] and the concept of holography [5]

that paved the way for taking the leap from analysis to synthesis. In

the beginning, holography was realized using photographic emulsion

plates, but the production of such plates is cumbersome. Moreover,

the created light-fields are not reconfigurable, because the plates are

only designed for one specific light intensity.

It took the development of spatial light modulators (SLMs) based

on liquid crystal technology, a pinnacle of modern technology, to

bring holography to the next level. In a phase-modulating SLM the

optical path length is manipulated on an array of pixels, enabling
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2 introduction

one to shape intensities in a far field according to Fraunhofer diffrac-

tion. As SLMs are reconfigurable, an optical setup does not need to

be physically altered to create all kinds of light fields. Hence, they

quickly became valuable for the enhancement of optical tweezers for

microscopic particles in biology and chemistry [6]. The possible use of

SLMs in atomic physics also didn’t go unnoticed, as they can be used

for shaping precise traps and robust potentials in quantum dynamic

[7], and since then SLMs have become an integral component of exper-

iments with ultracold quantum gases[8, 9]. Nonetheless, SLMs have

so far not been used for observing nonlinear optics with structured

light in Rydberg gases. Therefore, the experiment proposed by the Ry-

dberg group presents a novel approach for the application of a spatial

light modulator.

The proper control of a SLM is inextricably linked to the topic of

computer-generated holography and the problem of phase retrieval.

It turns out that calculating the necessary phase patterns for specific

target intensities is a complicated issue with many different solutions.

Since the 1970s a lot of research was pursued on these topics, e.g. on it-

erative Fourier transform algorithms, knowledge that is of high value

for light shaping.

This report presents the subtleties of setting up a spatial light mod-

ulator, starting with the simulations of continuous phase patterns

with an Iterative Fourier Transform Algorithm to the setup of the

experimental test platform, where a range of issues like aberrations

have to be tackled. In addition possible further improvements are

discussed, and a work plan for the consequent steps towards imple-

menting the SLM in the Rydberg atoms experiment is presented.

At this point I would like to acknowledge two sources that served

as the main references for this thesis. The PhD thesis "Quantum Engi-

neering with Ultracold Atoms" by Rick van Bijnen [8] contains a chap-

ter where the use of a phase-modulating SLM is thoroughly depicted

and many creative ideas to optimize it are presented. Marvin Holten

from the Ultracold Quantum Gases group at the Physikalisches In-

stitut kindly provided us with an original version of the LabVIEW-

program to control the SLM, that he developed at the time of his

bachelor thesis "Hamiltonian Engineering with Ultracold Atoms" [10],

which also contains many valuable insights.

The Ultracold Quantum Gases group has since then developed an im-

pressive command of beam shaping with a SLM, e.g. for the creation

of rotating mictrotraps [9]. The Rydberg group will for sure be able

to learn a lot from their experiences.



2
T H E O RY

In order to explain the overarching goal of creating structured light,

I begin by giving a short summary on investigating nonlinear op-

tics with Rydberg atoms. Then the theoretical groundwork for under-

standing how to shape a laser beam using a spatial light modulator

is laid, therefore the principles of a phase-modulating SLM are pre-

sented. Then the necessary basics of Fourier optics are derived, before

applying the formulas to our SLM.

2.1 investigating optical nonlinearities with rydberg

atoms

In this section an overview of the underlying theoretical concepts of

Rydberg EIT is given and the necessity of using structured laser light

for investigations of the optical nonlinearity is outlined. For Rydberg

atoms and the concept of EIT a large number of publications provide

an in-depth introduction. To gain deeper insights the reader may wish

to read [11] about Rydberg atoms, [2] about recent developments of

research with ultracold Rydberg atoms, [12, 13] about Electromagneti-

cally Induced Transparency, [14] about nonlinear optics with Rydberg

atoms and [3] from our group about the latest ideas to enhance these

nonlinearities.

2.1.1 Rydberg atoms

Atoms, where one of the electrons is excited to a high principal quan-

tum number n, are called Rydberg atoms. This large principal quan-

tum number has serious consequences for the basic properties of such

atoms. For instance, in terms of the Bohr model for a one-electron

system the orbital radius of the electron scales with n2, which can

be interpreted as the electron being far away from the atom’s nu-

cleus. In this picture it is comprehensible that this results in a high

polarisabilty of these atoms, which is scaling with n7. As a direct con-

sequence of these exaggerated properties, atoms in a Rydberg state

are very sensitive to external fields.

Nonetheless, solving the Schrödinger equation for atoms with more

than one electron is impossible analytically, elementary hydrogen be-

ing the only atom where such a solution exists. Atoms that are sim-

ilar to a one-electron-system are alkali metals, as they only have one
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4 theory

valence electron. Hence, the energy levels of alkali atoms can be cal-

culated using an adapted hydrogen model taking into account the ex-

perienced charge of the core. This results in a quantum number being

shifted by a specific quantum defect. In our experiment Rubidium-87

atoms are excited up to states with n ranging from 40 to 70.

For their quantum mechanical nature to appear, ensembles of Ryd-

berg atoms have to be cooled down to a few micro Kelvin using cool-

ing methods, a dipole trap and sophisticated magneto-optical trap.

At these low temperatures the interaction energies will become more

important than the kinetic energies. For more details on our current

experiment the reader is referred to [3].

Rydberg atoms in our experiment can be described as a three-level

system consisting of a ground state |g〉, an excited state |e〉 and a

Rydberg state |r〉. In our case the states |g〉 and |e〉 are coupled by

a probe laser with frequency ωp and |e〉 and |r〉 by the control laser

with frequency ωc (three-level ladder-scheme). The coupling strength

between the quantum mechanical states is characterized by the Rabi

frequency Ω. It depends on the transition dipole moment d and the

driving field E,

Ω =
−d · E

 h
, (1)

where  h is the Planck constant. Hence, the squared Rabi frequency

Ω2 is proportional to the intensity of the driving laser.

Because of the large polarisability of Rydberg atoms long-range in-

teractions between Rydberg atoms occur. Performing a Taylor expan-

sion of the energy of a two-Rydberg-atom system, it can be shown

that dipole-dipole type and van der Waals type interactions arise [3].

The latter’s potential scales with C6

R6 , where R is the distance. As the

van der Waals coefficient C6 scales with n11 this kind of interaction

is highly tuneable by changing the n of the system with the coupling

laser.

One prominent consequence of Rydberg-Rydberg interaction is the

so called Rydberg blockade: Within a certain Rydberg blockade ra-

dius Rb only one and not both atoms can be excited into a Rydberg

state. This can be explained in the pair state basis of such a system

as shown in figure 1. This pair-state illustration shows that for short

distances the energy level of the |rr〉 pair states gets shifted due to

the interaction, such that a transition from |rg〉 to the doubly excited

Rydberg state |rr〉 is prohibited. Inside such a blockade sphere only

one atom is allowed to be in a Rydberg state, thus all the others are

effective two-level atoms.
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2.2 spatial light modulators

As mentioned in the introduction, a large variety of methods to shape

wavefronts has been developed over time, with Spatial light modula-

tors being the most recent and innovative development. The term spa-

tial light modulators actually comprises a range of devices that mod-

ulate the intensity of a laser beam, its phase or both at the same time.

For an overview of the variety of existing SLM devices the reader

may wish to read [18]. In this subsection only the details relevant for

our phase-modulating liquid crystal on silicon (LCOS-) SLM1 are dis-

cussed.

2.2.1 Liquid crystals and their birefringent properties

Since their discovery at the end of the 19th century, liquid crystals

have become part of our every day life. They are a centrepiece of

many types of electronic displays that are in use today.

The molecules in liquid crystals offer a variety of astonishing phys-

ical properties, hence their ambiguous name. On the one hand the

molecules are seemingly free of movement such that they are remi-

niscent of liquids, but on the other hand they can show a particular

order on a macro- or microscopic scale. The study of liquid crystals

form a distinct research field and are extensively treated in numer-

ous textbooks like [19]. We are going to make use of their ability to

be specifically aligned by an external electric field.

Typical arrangements of the liquid crystals molecules are referred

to as phases, in the present case the optical properties of the parallel-

aligned nematic phase are used. Such a nematic phase is sketched in

figure 7a, the rod-like molecules show a long-range order in form of

a parallel alignment of the molecules, but the positions are not fixed.

As a consequence such a medium is anisotropic.

In a LCOS-SLM this initial arrangement of the molecules is im-

posed by the direction of fine polishing the glass plates, which repre-

sents the boundary conditions (see 7b).

The fundamental property necessary for phase-modulation is the

birefringence of these nematic phase liquid crystals. In general light

travelling through a birefringent medium experiences two refractive

indices, depending on the plane of incidence and the polarization.

This phenomenon is depicted by dissecting the light ray in one part

that travels along the extraordinary axis with a refractive index ne

and one traveling along the ordinary axis with no. The axis with the

larger refraction index is also called slow axis and the other one fast

1 Hamamatsu X10468-02
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in the final setup e.g. polarising beam splitters are a strict require-

ment.

It is worth mentioning that amplitude modulating LCOS-SLMs also

exist. To that end the SLM locally changes the polarization of the light.

Here a different nematic alignment in the cell is needed, the so called

twisted nematic phase, where the molecules along the cell are gradu-

ally twisted by 90 degrees perpendicular to the light propagation. A

polarisation analyser behind these cells results in a polarisation de-

pendent attenuation for each pixel. Nevertheless the disadvantages

of a really low efficiency, which leads to a pixelization of the created

light fields, outweigh the advantage of being able to directly modu-

late the amplitude, such that phase-modulating SLMs are often the

device of choice.

2.2.2 Hamamatsu SLM

The phase-only-modulating Spatial Light Modulator used through-

out the work for this thesis is the X10468-02 LCOS-SLM manufac-

tured by Hamamatsu. This model is optimized for a wavelength of

785nm and can handle power of up to 5W. Due to the properties of

liquid crystals, extreme temperatures (< −10◦C and > 40◦C) can have

irreversible damaging effects and thus have to be avoided.

The liquid crystal chip has a size of 15.8mm× 12mm and consists

of 792× 600 pixels. The fill rate of the pixels amounts to 98%, and

incoming light is utilized to 97%. Thus the space in between pixels,

where light can not be modulated, is relatively small. This unmod-

ulated light is focused into a certain spot, known as the zero order

spot, whose influence on desired targets has to be taken into account

when using a SLM.

The pixels can individually modulate the phase by up to 2.469π.

The accessible phases are discretised by 256 (8 bit) input levels. The

maximum phase shift is an important value to correctly control the

SLM. The control is realized by converting the phase patterns into

grey scale images with values ranging from 0 to 255. According to

the manufacturer a grey scale value of 205 corresponds to a 2π phase

shift. This value is referred to as the 2π value in the SLM-control-

program as the generated phase patterns are calculated as modulo

2π. Consequently the applicable phase levels are discretised by steps

of size 2π
256 = 7, 8125× 10−3.

The SLM controller unit is connected to a computer via DVI-D,

where the SLM is recognised as a second monitor, for which the res-

olution has to be set to 800× 600 pixels. Hence, all simulations have
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and θ is the angle between r and the normal of the aperture plane.

Equation 5 can be formulated in Cartesian coordinates using cos θ =
z
r :

E(x,y) =
z

iλ

∫∫

Σ

E(ξ,η)
exp(ikr)

r2
dξdη. (7)

Now the Fresnel-approximation is used to further reduce this inte-

gral. Assuming z to be large compared to the aperture and the image

size one can use the Taylor expansion of a term of the form
√
1+ b

up to the the first order

√
1+ b ≈ 1+

1

2
b (8)

to rewrite r as

r = z

√

√

√

√

1+
(x− ξ

z

)2
+
(y− η

z

)2

︸ ︷︷ ︸
b

≈ z
[

1+
1

2

(x− ξ

z

)2
+

1

2

(y− η

z

)2
]

, (9)

When we introduce this approximated r in equation 7, we can fur-

ther omit the second factor of r in the nominator. This cannot be done

in the exponential function due to a large k.

E(x,y) =
eikz

iλz

∫∫

Σ

E(ξ,η)exp
{

i
k

2z

[

(x− ξ)2 + (y− η)2
]

dξdη
}

(10)

Factoring out the terms independent of ξ and η and incorporat-

ing the limits of the aperture Σ into the field E(ξ,η) we are able to

formulate the integral from −∞ to ∞ as

E(x,y) =
eikz

iλz
ei

k
2z (x

2+y2)

+∞∫∫

−∞

[

E(ξ,η)ei
k
2z (η

2+ξ2)
]

e−i 2π
λz (xξ+yη) dξdη.

(11)

Here the Fourier transform of the complex field in brackets is recog-

nisable. By introducing the strong far field Fraunhofer approximation,

where we assume the propagation distance z to be significantly larger

than the aperture size normalized to the wavelength, we obtain

z ≫ k(ξ2 + η2)max

2
. (12)

Also neglecting the prefactors of equation 11 which are negligible for

large z, equation 11 becomes

E(x,y) =

+∞∫∫

−∞

E(ξ,η)exp
[

− i
2π

λz
(xξ+ yη)

]

dξdη. (13)
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If we introduce spatial frequencies

fX =
x

λz
and (14)

fY =
y

λz
, (15)

we finally obtain a simple Fourier transform relation between the

fields in diffraction and image plane in the far field:

E(x,y) = F
(

E(ξ,η)
]( x

λz
,
y

λz

)

. (16)

Thus, adding a phase φ(ξ,η) to the complex field E(ξ,η) in the

diffraction (SLM)-plane manifests itself through the Fourier trans-

form of that input field, which will change both amplitude and phase

of E(x,y) in the image plane.

It should be emphasized, that despite of phase and fields being

the manipulated quantities, one is only able to measure the intensi-

ties I(x,y) = |E(x,y)|2 in the target and image plane. Our desired

patterns will be initially stated as target intensities and not field dis-

tributions.

As the intensities define the energy of the beam, applying Parseval’s

theorem to our case:
+∞∫∫

−∞

|E(ξ,η)|2 dξdη =

+∞∫∫

−∞

|F
[

E(ξ,η)
]

|2 dxdy =

+∞∫∫

−∞

|E(x,y)|2 dxdy, (17)

can be interpreted in terms of energy conservation. Hence, as one ex-

pects, no power is lost during the Fourier transform.

After all these approximations, we should realize how strong the

approximations actually were. To calculate a concrete distance z, for

which the Fraunhofer approximation (12) holds we can insert the size

of our SLM-chip and the used wavelength of 780nm:

z ≫ 400meters (18)

This strong condition is obviously not feasible in a laboratory. The

way to implement these strong conditions in practice is to use the

interesting Fourier transforming properties of lenses. As lenses bun-

dle parallel rays, that is, with the same wave vector (same spatial

frequency), into a singular focal spot they actually perform a Fourier

transform at the speed of light. In our setup the so 2f-setup is used,

meaning that the lens is placed one focal length behind the SLM (the

diffraction plane). The camera to observe the Fourier transform is po-

sitioned in the back focal plane of the lens (see figure 10). Hence, the

Fourier relation of input and output field (equation 16) is evaluated

for z = f. In the following z is always implicitly assumed to be the

focal length.
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thus can Fourier transform into an array of the same size. But is this

a realistic assumption for simulating the behaviour of the SLM setup?

If we assume the pixel size to be much smaller than the total area of

the SLM these pixels (k, l) with a centre coordinate ξk,ηl and phase

φkl can be regarded as δ-functions. Hence, the light field in the SLM

E(ξ,η) plane is a Dirac comb like function depending on the input

field Ei(ξk,ηl):

E(ξ,η) ≈
Nx−1∑

k=0

Ny−1∑

l=0

δ(x− xk)δ(y− yl)Ei(ξk,ηl)e
iφkl . (28)

Applying the continuous Fourier transform of equation 16 to the

field E(ξ,η) results in the light field in the image plane to also be a

Nx ×Ny grid of focal spots with the total size
(

Nx ·∆x
)

×
(

Ny ·∆y
)

,

such that we can discretise the image in points (m∆x,n∆y):

E(m∆x,n∆y) =

Nx−1∑

k=0

Ny−1∑

l=0

Ei(xk,yl)e
iφkle−i2π(km/Nx+ln/Ny).

(29)

For this reason the relation between both lights field can be realis-

tically simulated using DFTs.

As a last remark in this section it is noted, that the created patterns

are repeated periodically due to the last factor of equation 29, which

is in practice limited by the size of the Fourier lens.

2.3.3 Basic phase operation

Someone who starts to get acquainted with Fourier transforms and

Fourier optics will in general also start to build an intuition about

frequency space, but application of this intuition is limited with a

phase-modulating SLM: As we are only able to manipulate the phase

and not the amplitude of light the central equation for this thesis can

be simply stated as follows:

Io(x,y) = |Eo(x,y)|2
!
= |F

[
√

Ii(ξ,η)eiφ(ξ,η)
]

|2. (30)

Where Io is the desired intensity and Ii the input intensity imposed

by the gaussian laser beam. φ(ξ,η) is the phase distribution in the

SLM-plane that needs to be found. In most cases the solution will not

even be unique. A simple Fourier backtransform is not rewarding be-

cause of the Ii constraint. Solving this problem and finding a suited

Fourier transform pair is the subject of chapter 3 and 4, neverthe-

less there are few simple phase distributions that create characteristic

Fourier images. Three of them are presented in the following and

should be kept in mind.
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linear phase gradients

A basic theorem about Fourier transforms which follows straight

forward from the definition is the Shift theorem.

Assuming a DFT for a vector x represented by [xn]:

F
{
[xn]

}

k
= Xk, (31)

then adding a linear phase e
i2π
N mn for some integer m results in re-

placing Xk by Xk−m:

F
{
[xn · e i2π

N mn]
}

k
= Xk−m. (32)

This means that a linear phase shift in the spatial domain introduces

a shift in the frequency domain and vice versa. This property can

be used to shift the target intensities by imposing a linear gradient

of phase in the SLM-plane eiφgrad = ei(ax+by). Applied to the DFT

simulations with 792× 600 arrays and taking into account that the

phase is displayed on the SLM as a grey scale value ranging from 0 to

255, the phase gradient needed to shift a specific pattern by one focal

unit is:

a = 2π · 256
792

= 2.029 in x-direction and (33)

b = 2π · 256
600

= 2.680 in y-direction. (34)

As we have to take the modulo of 255 due to the phase modulating

limit this linear phase gradient effectively results in a blazed grating,

but we should note that with this simple linear phase gradient defi-

nition the modulation depth is always set to 2π when the greyscale

value 255 is reached. In this sense the maximum spot shift is created

by a blazed grating consisting of three phase levels with a step size

of 128 ≡ π. Hence, the maximum shift amounts to 128·2π
a = 396 fo-

cal units in x-direction and 128·2π
b = 300 focal units in y-direction. If

one specifically wants to reproduce blazed gratings with an SLM a

variable modulation depth should be included into the linear phase

gradient definition.







3
G E N E R AT I O N O F P H A S E PAT T E R N S

The central question, that has to be treated, is:

How can we achieve specific intensity distributions by phase-modulating

a laser beam only, the desired target intensity and the Gaussian input

amplitude being the given constraints? Due to these constraints that

are imposed by the use of a phase modulating spatial light modula-

tor, the approach of simply performing one Fourier transform is not

working.

Solutions to this kind of mathematical problem are phase retrieval

methods. To gain a better understanding where the considerations for

phase retrieval algorithms originate from a short digression on holog-

raphy is made. After that the iterative Fourier transform algorithm as

a solution to that problem is presented. In addition the possibility of

calculating the phase patterns analytically is discussed.

3.1 holography

Holography is a fascinating technique that has gained large attention

since its first proposition by Gabor in 1948 [5]. The general idea of

holography is to record amplitude and phase of an optical wave scat-

tered by a coherently illuminated object, such that these properties

can later be reconstructed. The recording is done by means of inter-

ferometry, that is, the interference pattern of a reference wave and an

object wave is recorded, for instance with a photographic plate (see

figure 16). If this recording medium is transparent and illuminated

with a properly chosen reconstruction beam, the original object wave

front can be restored, meaning that an image of the original object ap-

pears, without the object being physically present. For a mathemat-

ical description and thorough introduction to the different types of

holography see Goodman [18]. With the advent of the laser, a highly

coherent and monochromatic light source, in the 1960s holography

could be continuously improved and investigated.

Initially, holography was a purely experimental problem, but soon

the question arose, whether it would also be possible to simulate

holography with computers, which lead to emergence of the field of

study of computer-generated holography (CGH). These simulations

are not directly linked to physically creating holograms, but they al-

low for substituting elaborated interference measurements, such that

one can also create images of objects that never had to be physically
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with iterative Fourier transforms.

In this section an excerpt of solutions for the phase retrieval prob-

lem were presented. Although we are going to proceed with an adap-

tion of the Iterative Fourier-transform algorithm in the next section,

the possibility of analytical phase retrieval and thus beam shaping

was outlined because of its possible use for subsequent work as dis-

cussed in chapter 6.

It should be stressed that solutions to the phase retrieval problem

are in general not unique. This is due to the fact that only the ampli-

tude and not the phase is a constraint in the target plane. Furthermore

beam shaping is by far not the only field of application of this initially

purely mathematical problem, for an overview see [29].



4
T H E M R A F - A L G O R I T H M

A modern version of an Iterative Fourier transform for phase re-

trieval problems is the Mixed-Region-Amplitude-Freedom algorithm,

in short MRAF, that was proposed in 2008 by Pasienski and DeMarco

[26, 30]. They designed it specifically for the purpose of experiments

with ultracold atoms and it offers a great versatility for all kinds of de-

sired targets in combination with small simulation errors. This chap-

ter explores the subtleties of implementing an iterative Fourier trans-

form algorithm with an emphasis on the MRAF. After these computa-

tional considerations we will then finally be able to test the generated

phase patterns in our SLM setup.

4.1 the general idea

The MRAF-algorithm enhances the Gerchberg-Saxton-algorithm by

segmenting the target plane into two regions, a signal region SR and

a noise region NR, in the latter total amplitude freedom is allowed,

hence the name. The target intensity constraint is only applied in

the signal region. A mixing parameter m defines how the light is

relatively distributed between these two regions. Subsequently, the

third IFTA stage (equation 39) is replaced by:

At(x,y) · eiφt(x,y) →
(

m ·
√

It(x,y)|SR + (1−m) ·At(x,y)|NR

)

· eiφt(x,y).
(41)

In the simulations mixing parameters between 0.3 and 0.5 have been

proven to be valuable with regard to the figures of merit that are de-

picted in the next section. Not defining a noise region and setting

m = 1 is equivalent to the classical IFTA.

Typical noise masks have a circular or rectangular shape (see figure

20). In general the influence of the distance between target and noise

region seems to be negligible, a noise mask tight to the target pattern

does not necessarily produce better simulations. However, the specific

form and size of the noise mask may be of interest with regard to the

geometry of the atoms in the final experiment, more sophisticated

noise masks are in principle also conceivable [30].

In fact the concept of allowing some amplitude freedom has been

discussed before (as briefly mentioned in the MRAF-paper), the only

difference being that the mixing factor was not fixed, see for instance

Akahiro in 1986 [31].
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Optical vortices are also produced by phase singularities of higher

order, growing larger and larger (see figure 24b) . The specific wind-

ing number m is called the topological charge of the vortex and is

defined by the line integral along the optical vortex

m =
1

2π

∮

∇φ(x,y)dl. (47)

The topological charge is an integer, the counterpart of opposite

sign of a phase singularity just being the counterrotated version. Can-

celing such a singularity consists of adding spiral phase singularities

of opposite charge on each other.

The work in the references [34, 35] depicts that phase singularities

introduced during the IFTA-procedure always appear as pairs of op-

posite charge with most phase singularities being of the first order

(±1). In the first iterations of an IFTA self-annihilation of vortices can

occur by accident if singularities of opposite charge are in each others

vicinity. Nevertheless, this process of attracting, colliding and anni-

hilating only functions over small distances, consequently the most

vortices remain untouched.

4.3.2 Avoiding speckles

As has been proofed mathematically in the references mentioned

above, further iterations are unable to remove the speckles. Thus,

some enhanced vortex elimination techniques have been proposed.

They consist of automated phase singularity detection and artificially

introducing singularities of inverse charge. More convenient would

be the implementation of a softening factor β which gradually in-

creases from 0 to 1 during the IFTA such that in stage 1 (equation 38)

of the IFTA the phase of the previous nth-iteration is kept in part,

φtn+1 = βφnew + (1−β)φn, (48)

where φnew is the phase resulting from the preceding stage 4 and

φn the phase resulting from stage 4 of the second last iteration. That

way, strong phase fluctuations introducing phase jumps of π and thus

speckles should be avoided [8, 35].

The easiest method that proves to be entirely sufficient for our pur-

poses and that I have used during my work is to not let the algorithm

introduce speckles in the first place, and simply consists of choosing

an appropriate initial phase guess.

To that end the knowledge about basic phase operations in Fourier

transforms as presented in section 2.3.3 comes into play. The idea
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Table 2: Simulation values for sin2(r) target

peak to peak [f.u.] RMSE [%] efficiency [%]

40 4.8 44.5 (m=0.4)

20 12.5 18 (m=0.3)

12 20.5 19 (m=0.3)

The RMSE values can be further tweaked by selecting other noise

masks and adjusting the target size. In the end one will have to choose

a proper size with respect to the desired size in the experiment, be-

cause too large simulated targets will cause light to be waisted, mean-

ing that the shaped light distribution will have a smaller intensity in

the relevant region.

If one is interested in generally improving the MRAF the offset-

MRAF (OMRAF) algorithm [36] could be investigated, where an ad-

ditional global background intensity is added to the targets. This re-

duces the RMSE even further because the IFTA is then not forced to

create problematic regions of zero intensity. Like this also the prob-

lematic radial sinuses can be recreated with only a few percent RMSE.

Nonetheless an intensity background is probably not suited for our

final experiment, even though it could be discussed if a small offset

(usually 10% of the maximum amplitude, which is equivalent to 1%

of the intensity) would be acceptable.

I would like to conclude this chapter by demonstrating that the

MRAF is also able to reproduce more complex patterns, therefore

in figure 30 a series of simulations is shown. Obviously the use of

these patterns in a future Rydberg atoms experiment can be strongly

doubted, but actually shaping a real laser beam into these patterns

would for sure be an impressive demonstration of power of the SLM.







5
P R A C T I C A L I M P L E M E N TAT I O N A N D

M E A S U R E M E N T S

Up to now all our considerations were of purely computational na-

ture. They helped us creating phase patterns that we are now going

to test with our SLM. The central question that arises now is, to which

precision will the simulations be recreated with the laser light.

This chapter starts by describing the used experimental setup and

will then focus on how to overcome the aberrations and other prob-

lems that are deteriorating the quality of the shaped light patterns.

5.1 optical setup

The optical setup to investigate the basic functionalities of the SLM is

kept simple in order to minimize error sources, as is shown in figure

31.

After leaving the fiber (1) the collimated 780nm laser beam of a

power of ∼ 50µW is sent through a half-wave plate (2) and a polar-

izing beam splitter (3) such that its intensity can be modulated in

a certain range. To function properly the light incident on the SLM

should be polarized in the direction of the liquid crystal molecules.

The beam is then widened by a telescope (4) by a factor of 8 to make

use of the entire capabilities of the SLM with respect to the resolution

of our imaging system (equation 25).

Item (5) is the Hamamatsu spatial light modulator. After having been

phase-modulated the light passes an achromatic doublet lens of diam-

eter 50.8mm (6) with focal length 150mm which performs the Fourier

transform. The mirrors (6) allow for accurately aligning the beam on

the SLM. Following the instructions by the SLM-manufacturer the

incident angle of the beam is chosen small (the angle should not sur-

pass 5 degrees). The focal length will define the pattern size on the

CCD-camera (8).

The Fourier plane is finally displayed with CCD-camera from AVT

(Stingray F125) (8), whose semiconductor-chip has a resolution of

1292(H)×964(V) pixels, the individual pixel-size amounting to 3.75µm.

For easily adjusting the Fourier plane position on the camera another

mirror is implemented in the setup.
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5.2.2 Zernike polynomials

In order to reconstruct φA it is necessary to use a sequence of poly-

nomials which on the one hand create a smooth phase correction

pattern and on the other hand are able to inform us about the under-

lying aberrations of the optical system. To that end Zernike polyno-

mials are a powerful tool. They form a continuous set of orthogonal

polynomials on the unit disk, orthogonality implicating that they are

independent of each other [39]. The advantage of Zernike polyno-

mials over all other infinite sets of polynomials on the unit disk is

that the first polynomials represent classical types of aberrations like

coma, astigmatism and defocus.

As the area defined by the SLM is rectangular and not circular, the

original Zernike polynomials cannot be used. Therefore we have to

draw on Zernike polynomials calculated for non-circular apertures

like rectangles as presented in [40]. The principle consists of setting

the rectangular aperture perfectly in the unit disk such that the cor-

ners coincide with the unit disk margin, thus the aspect ratio of

600/800 pixels is the defining factor in our case. After measuring the

aberrated wave front, φA is fitted by decomposing it into a linear com-

bination of the first 15 Zernike Polynomials Zn, the magnitude of the

coefficients cn telling us which types of aberrations are dominating.

φA(x,y) =
15∑

n=1

cn ·Zn (53)

The fitting procedure itself consists of solving a linear equation sys-

tem represented by the following matrix equation:
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(54)

On the left hand side a matrix A consisting of the first 15 Zernike

polynomials evaluated for every pixel in one row is multiplied by a

column vector C containing the 15 Zernike coefficients. On the right

hand side the measured phase aberrations are represented as a col-

umn vector B. Thus the fitting procedure consists of finding an in-

verse matrix of A with the least square method and multiplying it

with the phase aberration vector B.

C = A−1 ·B (55)
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ple we reconstruct φA locally as a gradient around the center of the

circles (x0,y0)

φA(x0,y0) = ∇φA(x0,y0)(x− x0,y− y0), (56)

Calculating the according linear gradient to reconstruct φA revisits

the dimensional considerations in section 2.3.3 of this thesis. A shift

of (x,y) needs to be converted into focal units ∆x and ∆y taking into

account the camera pixel size ∆cam, meaning that we have to calcu-

late x·∆cam
∆x and x·∆cam

∆x respectively.

The Shack-Hartmann procedure can be summarized by four basic

steps

1. A circle on the SLM is imprinted with a linear phase gradient.

2. The Airy spot created by this circle is detected in the camera

image.

3. The displacement of this spot to the reference position is deter-

mined and translated into a linear phase gradient. This linear

phase gradient corresponds to the aberration on that part of the

SLM.

4. The circle on the SLM moves on to the next location and contin-

ues iteratively with step 2.

This method is obviously limited by the radius of the moving circle

because the calculation will assume one linear gradient for that entire

SLM-segment. Due to the growing Airy disc size and the diminished

intensity a radius of at least 40 pixels is needed. In order to achieve a

reconstructed phase pattern that can be fitted smoothly with Zernike

Polynomials a step size of 20 pixels proves to be adequate. As the

areas of the SLM are sampled several times due to the overlap of the

circles an average linear gradient for each region can be computed.

This averaging has the effect that in the end the displacements are

widely reduced but never completely vanish. In practice it has also

become clear that the reduction of the displacements, that is the aber-

rations, can be minimized by not applying the full correction at a

time, but by only taking 0.5 of the actual gradient and instead let the

algorithm run at least two times over the SLM. For the reconstruction

of the phase pattern the modulo of 256 due to the discretised phase

levels of the SLM should of course only be taken after fitting with

Zernike polynomials.
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5.2.4 Aberration correction

Now that the principle of this method of aberration correction has

been laid out the results of this procedure can be presented. As it is

recommended to always use the correction pattern provided by the

manufacturer we used it as a set background throughout the mea-

surements.

The aberrations persisting in this uncorrected situation can be de-

picted by deviation maps of the SLM surface as shown in figure 36.

These heatmaps show how the spot deviations vary on the surface of

the SLM in x and y direction respectively. The information contained

in these maps can be further visualised by histograms of the displace-

ments. If the algorithm is successful it should be able to largely re-

duce the width of the histogram values. After the first measurement

on the SLM surface horizontal and vertical displacements of the spots

ranges over several focal units.

We let the algorithm correct the aberrations three times in a row

and at each time use the correction pattern that was generated the

time before as a background. This allows for largely reducing the

aberrations as is shown in figure 36. The heatmaps that use the same

colorscales as before are now more homogenous and the range of dis-

placements decremented by a factor of 4 and 16. Applying the final

correction pattern (see figure 38) to the SLM finally makes the grid of

spots visible (see figure 36). Nevertheless the grid still contains some

aberrations.

Another interesting application for this aberration correction method

is to see whether it is able to recover the correction pattern provided

by the manufacturer. To that end correction runs without the Hama-

matsu pattern (see figure 7b) were carried out. In figure 38 the result

can be compared to the correction pattern where the Hamamatsu pat-

tern was already applied. A resemblance is identifiable. Actually it is

hard to tell which of them does the better aberration correction, as

the displacements are similarly diminished and the corrected grid of

spots looks alike.

To finish this section about aberration correction it should be con-

sidered how this method could be used in the final experimental

setup with Rydberg atoms. One may think that the presented method

is useless, because it will not be possible to place the camera in the

plane where the atoms are going to be trapped. It is thus worth men-

tioning that the method was specifically designed for setups with ul-

tracold atoms and actually has been tested in a magneto-optical trap,

where ions were used as the displacement indicator to reconstruct the

phase aberration [37]. According to the same publication the correc-

tion performance works near the diffraction limit. The Shack-Hartmann
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I also performed some flatfielding measurements to test if the dif-

ferent CCD pixels’ responsivity may be a source of trouble in our

setup. Flat fielding is performed by homogeneously illuminating the

CCD chip through a diffusor and then measuring the responsivity

of each pixel. A master flat field is then created by normalizing the

pixel values such that the median response of each pixel is one, but

in this regard our CCD is apparently not the problem. All pixels had

a responsivity close to 1.

5.4.2 First approach to avoid the zero-order spot

Towards the end of my project I tried to build a set up where the

zero-order spot is spatially filtered out. To that end one can spatially

separate it from the target with a linear gradient in an intermediate

Fourier plane. There the unmodulated light can be blocked with an

aperture. We then need to lenses in order to recreate the Fourier im-

age for the CCD. This is then a 6f setup, see figure 43. This eliminates

the bright zero-order spot from the field of view of our camera, such

that the laser intensity can be set higher in order to make the images

more visible. Due to the additional lenses the shaped intensity pat-

terns are now more aberrated than before, but we can make use of

the Shack-Hartmann algorithm in order to find a correction pattern.

For the reconstruction of the aberrated wavefront it is important to

know the new focal unit that has been changed by the additional

lenses. After performing aberration correction at this displaced loca-

tion, the 10× 10 grid is more aberrated than after the correction in

the initial position. Apparently this method comes at the cost of in-

troducing additional aberrations, that cannot fully be recovered by

the Shack-Hartmann algorithm.

In the future more sophisticated methods to avoid the zero-order

spot should be tested, for instance one could use lens-like phase pat-

terns in combination with linear gradients as suggested in [41]. I sup-

pose that the images would also be optimised if the shifted target

is already taken into account in the MRAF calculations instead of

adding a linear gradient afterwards.

5.4.3 Pattern measurements

Apart from the problems arising in the setup, it is of interest to ac-

tually measure the desired intensity patterns. For a discrete grid we

have already shown, that the aberration program enables us to do so.

Up to now, the program is not able to directly map between the

image and the target for which the implemented phase pattern was

initially calculated, so we remain at simply looking at the CCD image
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C O N C L U S I O N

6.1 summary

In this thesis preparatory work for a new approach to observing op-

tical nonlinearities in a Rydberg gas has been pursued with the focus

on beam shaping with a phase-modulating Spatial Light Modulator.

In order to create specific intensity patterns the first considerations

were dedicated to computer-generated holography and how to cal-

culate phase patterns that are needed for light to be shaped into a

certain form in a Fourier-optical setup. This demand turns out to be

an application of the phase retrieval problem, such that I could draw

on the numerical method of iterative Fourier transform algorithms

to solve it. Specifically the MRAF algorithm was implemented and

tested. I was able to show that it does indeed produce good simula-

tions for a variety of desired target intensities. In particular continu-

ous periodical intensities as planed in the final Rydberg experiment

could be simulated to an accuracy of a few percent error. For targets

as required in our final experiment, which happen to be of a sepa-

rable form, the phase pattern can be computed for each dimension

separately, which theoretically yields slightly better simulations to

the cost of light utilisation efficiency.

Concerning the experimental side of using the SLM, methods for

correcting aberrations and proper beam alignment making use of the

SLMs abilities have been presented and tested. The Shack-Hartmann

algorithm was implemented and contributed to remove large scale

aberrations, it could also be used in order to reconstruct the input

intensity in the SLM plane. Thanks to the correction patterns and

the correct beam specifications, the laser beam was shaped into si-

nusoidal targets. Nonetheless, first measurements showed that still

errors persist, such that in practice we cannot reach the smooth in-

tensity distributions as theoretically simulated. The influence of the

light that cannot be modulated by the SLM was larger than assumed,

towards the end of this project a simple method to filter out this error

source was implemented.

During the project multiple avenues with ample potential for im-

provement have been identified. Implementing these shows marked

promise towards achieving the desired pattern quality. Hence, the last
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section of this thesis is dedicated to the presentation of these potential

enhancements.

6.2 outlook

The ideas I propose for the consecutive work can be roughly divided

into two sections. First, addressing issues that concern the actual

setup, and second rethinking the way how the phase patterns are

calculated.

6.2.1 Recalibrating the setup

Although I presented a way to correct aberrations with the SLM, the

correction can probably be further improved. A simple indicator for

this is the diffraction pattern of the SLM without any specific phase.

Even after adding the measured correction patterns the shape is far

from being perfectly sinc2 as the Fourier-transform of a rectangular

apperture predicts (see figure 11). Furthermore the grid patterns that

were made visible after aberration correction are still not optimal (see

figure 36), some aberrations seem to remain.

The Shack-Hartmann algorithm is a first approach, but there are

also other methods that sound more rewarding. Another type of

aberration measurement might be of use in the future, namely Phase-

shifting interferometry originally proposed by Bruning et al. [42], which

makes use of the specific interference pattern of two beams. A thor-

ough discussion of this technique and how to successfully adapt it to

SLMs for aberration correction has been done by Palm [9] and Ham-

mel [28]. The interference of two beams can be realized with a SLM by

taking light from the centre of the SLM as a reference beam and light

from another part as a probe beam (see figure 46). With at least three

different phase measurements for each SLM sample the phase aberra-

tion φA can be reconstructed. According to their results this method

should provide a significantly more accurate way of addressing the

aberrations. It is reported that in comparison the Shack-Hartmann

algorithm is only able to correct large scale aberrations.

Hence, I suggest to implement it in our program and compare it

to the Shack-Hartmann technique with regard to some phase-error-

metrics. It might turn out that the image quality can improve further

using PSI, if it is also able to reduce small scale aberrations as has

been reported. It would be also interesting to see if the correction

patterns measured with that method are also still valid when large

linear phase gradients are applied to the SLM in order to shift the

target. With the Shack-Hartmann correction phase patterns this does

not seem to be the case.
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were reproducible (see figure 39a), although this could also be caused

by the measurement method itself. The assumption of a continuous

input intensity is important for the phase pattern calculations to be

good. Most importantly the positioning of the SLM should be recon-

sidered. It could be investigated, how the incident angle affects the

images, since we may not be using the optimal angle currently. In

retrospect, this analysis of the setup should have been the first task.

This revisiting of the setup with devices to measure beam profile and

polarisation can be expensive and tedious, but I think that it is a

valuable task. The experiences there might save a lot of time for the

migration of the SLM into the final Rydberg gas experiment.

Finally, concerning the setup it should also be considered what the

objective in the final experiment will implicate for the targets and

how the resolution of the sinusoidal targets will be affected. The spe-

cific size specifications of the final experiment are also important for

the phase pattern calculations, such that not too large or too small

targets are simulated, the former causing unnecessary waste of light.

Lastly, one can still think about implementing a camera feedback

method, which is probably the first correction method that comes to

ones mind, but that requires some precise work in practice. Simple

concepts for that kind of feedback have been presented e.g. in [8, 10,

43]. In principle they all consist of comparing desired target and ac-

tual image, adjusting the desired target and calculating a new phase

pattern. As a correct mapping between camera image and target in-

tensity has to be done, one has to be careful to not add some addi-

tional errors, but in the end this kind of feedback can be the most

rewarding, possibly being a stand-alone method for all kind of er-

rors without further aberration algorithm being needed. Implement-

ing this kind of feedback is probably facilitated if it is not applied

continuously but calculated once in an external program. Note, that

LabVIEW is probably not the best programming language for such

image comparison. Nonetheless it is probably more favourable, if the

setup optimisation I proposed before turns out to be sufficient, so that

such a program does not need to be developed.

6.2.2 Rethinking beam shaping

The second big task consists of reviewing the technique used to cal-

culate the phase patterns.

Simulations with an IFTA are easy to implement, applicable for all

kind of targets and in addition to their versatility are also very accu-

rate. This is why they have established themselves as a robust method

for shaping specific 2D traps and potentials. The fact that IFTAs are so
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widely used for this purpose made us believe that they are also suited

for our purposes, although the phase in the image plane might be a

constraint that we cannot allow to be a degree of freedom as the IFTA

does.

This is due to the fact that the phase might cause some unwanted

diffraction throughout the propagation of the light pattern. As the Ry-

dberg gas in the experiment will have a depth of ∼ 100µm it should

be investigated how the phase is diffracting the intensity distributions.

We would like the intensity pattern to be robust and only altered due

to the influence of the Rydberg medium. Still, this is only a assump-

tion that needs to be investigated. In order to do this the propagation

of the light through the Rydberg medium according to the paraxial

propagation equation has to be studied, which has the form

i∂zE(r⊥, z) =

[

−
∇2

⊥

2k
+U(r⊥, z)

]

E(r⊥, z) (57)

where U(r⊥, z) is the effective light potential depending of the first

and third order susceptibility:

U(r⊥, z) = χ(1)(r⊥, z) +

∫
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⊥
)|E(r ′

⊥
, z)|2 dr ′

⊥
(58)

This equation is not solvable analytically but can be solved numeri-

cally using the split-step Fourier method as described in [3].

In principle we could simply plug the simulated patterns from the

MRAF into this numerical simulation, including the phase in the im-

age plane as another result of the IFTA that we have so far neglected.

If the diffraction is too strong one could then recompute a similar

good intensity pattern with another initial phase guess to get another

phase distribution in the image plane. Nonetheless this straightfor-

ward trial and error approach might not produce satisfactory results

at all. Therefore I suggest considering alternative ways of beam shap-

ing, where also a phase is set as an additional constraint. Therefore

the phase which is at least causing diffraction needs to be determined.

Setting a phase constraint is simply not possible with an IFTA, al-

though it is actually conceivable to set a phase constraint only in

a certain domain for instance (or some other type of soft constraint),

but to my knowledge this has not been tried so far and there might be

mathematical reasons that I am not aware of why adapting the IFTA

like this would render it useless, but at least this could be tested once.

Fortunately, there are some other ways of phase pattern calcula-

tion where the phase in the image plane can be set, like the tech-

nique of analytic beam shaping briefly presented in section 3.3. In

general analytic beam shaping only consists of one Fourier transform

and thus also requires that the amplitude in the SLM plane can be
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changed. The trick used to make this possible with phase-only modu-

lating SLMs is to mimic a blazed grating. Locally changing the depth

of this blazed grating can be used to also effectively manipulate the

phase to the cost of a smaller light utilization efficiency compared

to the MRAF. There is not a unique way to proceed for this, one of

them has been intensively studied in [28] and a recent very interest-

ing review paper [27] presents six of these methods. These techniques

should be tested with regard to their ability to produce the desired

targets but additionally also with regard to their ability to create the

desired phase patterns in the image plane, something that the men-

tioned publications have not investigated. Of course the recreation of

a desired intensity pattern is the first priority, but how a certain phase

is reproduced would also be an interesting subject.

Analytic beam shaping with blazed gratings is not the only way of

beam shaping where the phase can be set as a constraint. Another

totally different and also algorithmic approach is the new method of

conjugate gradient minimisation as presented by Harte [44].

This method functions on the basis of minimising cost functions and

is thus mathematically more challenging than an IFTA, but nowadays

enough numerical libraries exist to implement such a differential ap-

proach. The cost function can be adapted to one’s needs and can also

include the phase as a constraint as used by Palm [9], which is the

reason why this approach should also be suited for simulating both

amplitude and phase.

Additionally two other points might be of interest in the future con-

cerning the calculation of the phase patterns.

A recent publication [36] recommends to optimize phase pattern

calculations by making use of the full Helmholtz propagator and not

only the Fourier transform. According to the authors this significantly

improves the resulting images in an SLM setup.

Up to now the speed of the calculations was of no concern as in our

experiment the phase patterns can simply be calculated in advance.

If live calculation is desired, analytical beam shaping is probably the

fastest method as long as the algorithmic approaches are not GPU ac-

celerated, but at that point the limited refresh rate of the SLM (120Hz)

is probably the most limiting factor (That is not the case for other

types of SLMs like Digital Mirror Devices.). Eventually the light uti-

lization efficiency of the beam-shaping methods is also of interest,

probably not for the planned interaction imaging experiment, but for

other types of setup where the available laser power is limited.
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6.2.3 Closing remarks

Apart from finding the most suitable way of beam-shaping for our

necessities, the workflow around the SLM should be reconsidered.

At this early stage the investigations have relied on working with

the LabVIEW-environment. LabVIEW makes programming accessi-

ble and the creation of GUIs easy. For controlling the SLM the current

program is a reliable tool.

Nevertheless, it might be more productive to specify the tasks and

outsource some of them into other more suited programming envi-

ronments, for instance the implementation of different phase pattern

calculations methods or image analysis (e.g. ImageAlign in Mathe-

matica). Developing such a strategy of separating the tasks would

keep the LabVIEW control program overseeable, such that it is eas-

ier to adapt for other applications in the future without having to

rewrite the entire LabVIEW-program. Furthermore, that would also

enable more people with a diverse programming background to get

involved into working with the SLM. This can only be beneficial for

the project.

The phase-modulating SLM is a versatile tool on many different

levels. Not only can it be used for all kinds of applications in atomic

physics, but also allows for ideas and techniques coming from com-

pletely different fields to be applied to it, as exemplified by the aberration-

correction methods for instance. The SLM is a device that invites sci-

entists to be creative and tweak it to their needs.

Tackling the problems outlined above is not rocket science. Most of

the required knowledge is already there, sometimes hidden in plain

sight.

Taken as a whole, mastering light shaping with an SLM is just

one step, but a very crucial one, towards observing the intricacies of

optical non-linearities in a Rydberg gas and will for sure also render

experiments possible that quantum physicists have not even thought

of yet.
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