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Goals of my thesis

Central task

Implement a framework for PaleoDA with speleothem and ice core data
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Goals of my thesis

Scientific questions

• What are the characteristics of reconstructed global and regional (hydro)climate

for the last millennium?

• How do the speleothem and ice core records contribute to the climate

reconstructions?

• What is the temporal variability of the reconstructions?

• How do model-biases and inter model-differences affect the PaleoDA

reconstructions?
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The Data

Proxy records (δ18O)

• Speleothems (SISAL v2)

• Ice cores (Iso2k)

Models (isotope-enabled)

• ECHAM5-wiso (96 x 48)

• iHadCM3 (96 x 73)

• GISS (140 x 90)

• iCESM (144 x 96)

• isoGSM (192 x 94)
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The Method: The Kalman Filter

Update and Kalman Gain equation

X prior + K (Y − HX prior ) = X post

K = cov(X prior ,HX prior )[cov(HX prior ) + R]−1

X prior Prior state (Climate model)

Y Observations (Proxy records)

H Observation operator (PSM)

HX prior Observation estimates

R Measurement error

• Covariance computation:

⇒ Ensemble Kalman Filter

⇒ Offline DA uses a static covariance

• Ensemble Kalman Filter also computes posterior uncertainty (smaller)
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The Method (example)

  

  

0.8 0.4 0.0 0.4 0.8
 T [K]

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Proxy record ( 18O) [ ]

Assimilating 4  18O measurements into a temperature field
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Reconstruction method in short:

• Temporal information: Proxy records

• Spatial information: Simulation

Two restrictions for the previous example

1. In practice: Simultaneous assimilation (computation speed is relevant)

2. Posterior uncertainties not shown in this example
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Challenges

• Large model-proxy δ18O offsets at individual locations

• Results do not make sense

⇒ Anomaly reconstruction wrt reference period

• But, this way we can not correct mean state biases with PaleoDA

• Irregular time resolution of proxy records

• Binning to larger than annual time steps: information loss

⇒ Implemented a multi-time scale approach (also affects covariances)

• Resampled proxy record time series to median resolution

• What is the right proxy record uncertainty?

• Question open because proxy-system-model not calibrated
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Validation of the framework with Pseudoproxy Experiments (PPE)

PPE for temperature with δ18O from 217 proxy locations (SNR 0.5).

Using different model for prior and target. Global mean of error metrics.
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• Results are better for GMT

• Multi model ensemble (MME) yields slightly better results

⇒ Biases in covariance even for anomaly reconstruction
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Reconstruction of variability by multi-time scale algorithm

PPE with δ18O from 100 locations (SNR 0.5).
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⇒ Hints at underestimation of multi-decadal variability

• Also real data experiments indicate better variability reconstruction

⇒ Requires more testing of experimental/pseudoproxy configurations
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Application to proxy record data: Global mean temperature (wrt 851-1849CE)
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Year CE
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• Uncertainties in the range of 0.15K

• Prior dependency of amplitudes

• Fluctuations are comparable to LMR and PHYDA reconstruction 11



Hovmöller plots
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• Correlation analysis also underlines larger influence of the ice cores

• Smallest temperature changes in the mid latitudes
12



Reconstruction of South American Hydroclimate
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• Existing reconstructions use few proxy records from that region

• Blue box: Core South American summer monsoon region (Vuille 2012) 13



Reconstruction of South American Hydroclimate
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Reconstruction of South American Hydroclimate

• ”Little Ice Age“ clearly visible in both temperature and precipitation

• Potential for more detailed reconstructions!
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Conclusion and outlook

• First multi-time scale PaleoDA with isotope-enabled models, ice cores and

speleothems

• Anomaly reconstructions yield realistic results

• Methodological details of PaleoDA need to be assessed better:

1. Realistic uncertainties

2. Time scales of proxy records

3. Quantifying the covariance structure and the influence of PSMs and observations

4. Debiasing the model prior

• Next months: Focus on South American Hydroclimate

16



Conclusion and outlook

• First multi-time scale PaleoDA with isotope-enabled models, ice cores and

speleothems

• Anomaly reconstructions yield realistic results

• Methodological details of PaleoDA need to be assessed better:

1. Realistic uncertainties

2. Time scales of proxy records

3. Quantifying the covariance structure and the influence of PSMs and observations

4. Debiasing the model prior

• Next months: Focus on South American Hydroclimate

16



Conclusion and outlook

• First multi-time scale PaleoDA with isotope-enabled models, ice cores and

speleothems

• Anomaly reconstructions yield realistic results

• Methodological details of PaleoDA need to be assessed better:

1. Realistic uncertainties

2. Time scales of proxy records

3. Quantifying the covariance structure and the influence of PSMs and observations

4. Debiasing the model prior

• Next months: Focus on South American Hydroclimate

16



Thank you!

17



Backup slides
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Spectra of GMT reconstructions
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CPS and PAI are reconstructions from Pages2k 2019
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LMR and MME local comparison.
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No detrending.

Largest similarity over West Antarctica and Greenland.
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Comparing Models to proxies: Proxy System Models (PSMs)

• Developed for data-model comparison

• What proxy value does a simulated state represent?

→ forward approach (Evans 2013, Dee 2015)

• physics-based/statistical PSMs

Icecore δ18Oprec-PSM

• Precipitation weighting for annual

δ18O

• Height correction (isotopic lapse rate)

• Diffusion

Speleothem δ18Oprec-PSM

• Infiltration weighting for annual δ18O

• Height correction (isotopic lapse rate)

• Fractionation

• Karst filter

20

X post = X prior + K (Y − HX prior )



Algorithm sketch

2.1 Resample proxies to target resolution(s)

3. Data Assimilation loop 
 
 
 
 

0. Config  

 

4. Compute evaluation metrics and save

1.1 Proxy estimates from model (PSM)

1.0  Model data (prior) 

1.2  Generate pseudoproxies

1.3 Bring prior into vector form

2.0 Proxy data       and error

Algorithm sketch for Paleoclimate
Data Assimilation 
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Multi-timescale DA approach following Steiger and Hakim 2016

Idea:

5 year spaced proxy

1 20

20

10 10

5 5 5 5

20 consecutive years in prior block

11 1 1

10 year spaced proxy

• Reconstruct (sub-)blockwise instead of annually.

Caveats

• assign proxies to (sub-)blocks

→ resampling to median resolution

• additional calculations

Advantages:

• Proxies representing mean state over

several years can be used

• Use timescale appropriate covariances

• Get more reconstruction out of proxies 22



What the heck are Ensemble Square Root Kalman Filters?

Kalman Filter and posterior covariance Ppost

(Kalman 1960)
Xpost = Xprior + K(Y − HX prior ) (1)

K = PpriorHT (HPpriorHT + R)−1 (2)

Ppost = (I− KH)Pprior (3)

Problem dimensions

Ne Ensemble members in

prior

Ny Number of proxies

Nx State vector length

(grid × vars)

• Nonlinear H, unknown prior covariance Pprior? → Ensemble Kalman Filter (Evensen 1994)

• Original EnKF gets Ppost too small → EnKF in square root form

Ppost =
Xpost(Xpost)T

Ne − 1
(4)

= XpriorT (XpriorT )T (5)

= Xprior (TTT )X prior T (6)

Find the matrix T

• not uniquely defined, use Lin Alg tools: SVD,

EVD ...

• Best solution depends on problem dimensions
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