
Department of Physics and Astronomy

Heidelberg University

Master thesis

in Physics

submitted by

Mathurin Arthur Choblet

born in Lich

2022



Reconstructing climate fields of the last millennium

with data from terrestrial climate archives and isotope-enabled

GCMs using Data Assimilation

This Master thesis has been carried out by Mathurin Arthur Choblet

at the

Institute of Environmental Physics

under the supervision of
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Abstract

Data Assimilation in the field of paleoclimatology (PaleoDA) is an original method that has
been used in several climate reconstructions for the last millennium. By fusing information
from both climate proxies and general circulation models (GCMs), PaleoDA provides statistical
estimates of climate fields that are dynamically consistent. However, existing reconstructions
mostly rely on calibrated tree ring data and assimilate proxy records on a single, annual time
scale. Ice cores and speleothems, which record past variations in the oxygen isotope ratio
of precipitation, often have a lower and irregular time resolution, but reliably record climate
variations on decadal to centennial time scales. Here I implemented a computationally ef-
ficient DA algorithm that enables the assimilation of proxy records on multiple timescales.
The algorithm has been applied to speleothem and ice core records from the SISALv2 and
Iso2k database and five isotope-enabled GCMs. Reconstructions of global mean temperature
changes during the last millennium compare well in both amplitude and uncertainty to re-
cent studies. The potential of incorporating speleothems is shown with a reconstruction of
hydroclimatic changes in tropical South America, where speleothems represent the most abun-
dant type of hydroclimate archive. The experiments performed in this thesis also suggest an
increased reconstructed decadal to centennial variability by using proxy records on multiple
timescales. Making use of different climate models manifested the influence of model biases
on the reconstructions. Future PaleoDA studies will profit from more proxy records and the
multiple time scale approach to provide a globally complete picture of past climate changes in
both mean state and variability.

Zusammenfassung

Datenassimilation in der Paläoklimatologie (PaleoDA) ist eine Methode, die in mehreren Kli-
marekonstruktionen des letzten Jahrtausends verwendet wurde. Durch das Verbinden von
Informationen aus Klimaproxies und Klimamodellen berechnet PaleoDA statistische Schätzun-
gen von Klimafeldern, welche dynamisch konsistent sind. Bestehende Rekonstruktionen
stützen sich jedoch zumeist auf kalibrierte Baumringdaten und assimilieren Klimaproxies
auf einer einzigen, jährlichen Zeitskala. Eisbohrkerne und Speläotheme, welche Veränderun-
gen im Sauerstoffisotopenverhältnis des Niederschlags aufzeichnen, haben oft eine geringere
und unregelmäßigere zeitliche Auflösung, Sie erfassen jedoch zuverlässig Klimaveränderun-
gen auf dekadischen bis hundertjährigen Zeitskalen. Für diese Arbeit implementierte ich
einen effizienten DA-Algorithmus, welcher die Assimilation von Proxydaten auf mehreren
Zeitskalen ermöglicht. Für die Anwendung des Algorithmus wurden Speläothem- und Eis-
bohrkerndaten aus den SISALv2 und Iso2k-Datenbanken sowie fünf Klimamodelle, welche
auch die Isotopenverhältnisse simulieren, verwendet. Die Rekonstruktionen der globalen mit-
tleren Temperaturveränderungen während des letzten Jahrtausends sind in Amplitude und
statistischer Unischerheit mit neueren Rekonstruktionen gut vergleichbar. Das Potenzial der
Einbeziehung von Speläothemen verdeutliche ich anhand einer Rekonstruktion der hydrokli-
matischen Veränderungen im tropischen Südamerika, wo Speläotheme ein häufig vorliegendes
Hydroklimaarchiv darstellen. Die durchgeführten Experimente deuten zudem darauf hin, dass
die Rekonstruktion der dekadischen bis hundertjährigen Variabilität durch die Verwendung
von Proxydaten auf mehreren Zeitskalen verbessert werden kann. Durch die Verwendung
verschiedener Klimamodelle wurde der Einfluss von systematischen Fehlern in den Klimamod-
ellen auf die Rekonstruktionen veranschaulicht. Künftige PaleoDA-Studien werden von mehr
Proxydaten und der Assimilierung auf mehreren Zeitskalen profitieren um ein umfassenderes
Bild der Klimaveränderungen in der Vergangenheit zu berechnen, sowohl für den mittleren
Zustand des Klimas als auch für seine Variabilität.
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Chapter 1

Introduction

Paleoclimatology is the study of Earth’s past climates before the onset of the period of instru-
mental climate measurements in the 19th century. It aims at understanding how the climate
system has evolved in response to external and internal forcing factors (Bradley, 2015). The
main forcings are the orbital configuration of Earth, the amount of solar irradiance, volcanic
aerosol, greenhouse gas, and sulphate aerosol concentrations, land use changes as well as in-
ternal variability (e.g. El Niño-Southern Oscillation or the North Atlantic Oscillation). The
induced changes in both mean state and variability occur over a wide range of timescales, rang-
ing from millennia for orbital changes to days and hours for weather processes (Peixoto and
Oort, 1992). Studying the inherent mechanisms which are governing Earth’s climate is essential
for framing the currently experienced anthropogenic warming and assessing possible impacts
under different scenarios. Since its founding, the Intergovernmental Panel on Climate Change
(IPCC) dedicates parts of its assessment reports to new insights from the field of paleoclimatol-
ogy. One of the best known paleoclimate reconstructions that drew the attention of the broad
public to paleoclimatology, was the temperature reconstruction by Mann et al. (1998). Its key
finding about global mean temperature over the past six centuries, including the current warm-
ing, resulted in a simple curve, coined the hockey stick due to its horizontal handle and upward
blade form. Heavily contested and criticized in an infamous debate at first, the exceptional-
ity of the current warming has since been confirmed in numerous studies and has been shown
to be unprecedented over the last 120,000 years (Gulev et al., 2021; Kaufman and McKay, 2022).

The importance of past climates goes far beyond the study of global mean temperature. Cli-
mate is characterized by spatially and temporally heterogeneous and multivariate phenomena.
Paleoclimatology also studies changes in the hydroclimate, the biosphere, circulation patterns,
and extreme climate and weather events, like droughts and floods. These changes, which are
are of societal importance due to their direct and indirect impacts, are not only characterised
by changes in the mean states of the climate, but also by the variability around the mean states.
Understanding how the variability of climate has changed in the past and how it is affected by
the anthropogenic warming is a fundamental topic of investigation, which also has very practical
implications. For assessing the frequency of climate extremes for instance, it is assumed that
changes in variability are more relevant than changes in the mean state (Katz and Brown, 1992).

To investigate the mean climate state and its variability, time series of specific variables of
interest are studied. However, climate variables like temperature and precipitation have only
been recorded systematically and globally for the last 150 years. Thus, information has to be in-
ferred from so-called climate proxies. Proxy variations are preserved by natural climate archives,
which indirectly record their climatic environment. Examples of climate archives are tree rings,
varves (annual layers of lake and marine sediments), corals, foraminifera, ice cores, speleothems,
boreholes, sediments, deposits, and to a small extent also ancient documents. Whereas archives

11



12 1. Introduction

as tree rings can represent information on the annual scale, speleothems or sediments capture
climate variables on decadal to millennial time scales. Climate archives are imperfect recorders
of climate-related phenomena by their biological, chemical, or physical nature (Jones and Mann,
2004). It causes them to archive a filtered version of the climate signal, which is obfuscated by
noise and non-climatic influences. Understanding the signal-to-noise content of proxy records
is an essential task in paleoclimatology.

One important climate proxy type is the ratio of stable water isotopes. Water consists of different
isotopes, mainly the lighter H 16

2 O and the heavier and less abundant H 18
2 O. The concentration

of the oxygen isotope 18O is used as a climate proxy for past atmospherical conditions. The
ratio of both oxygen isotopes in a sample, which is given relative to a normed standard, is
named δ18O.

δ18O =

( 18O
16O sample

18O
16O standard

− 1

)
· 1000h (1.1)

δ18O is considered a valuable climate proxy because it can be interpreted in terms of temper-
ature, precipitation amount and moisture fluxes (Bradley, 2015). This is because throughout
the global water cycle, water undergoes several phase transitions. Heavier water molecules are
less likely to evaporate and more likely to condense compared to lighter molecules, such that
at each of these transitions the δ18O ratio is altered. As empirically formulated in the seminal
paper by Dansgaard (1964), the fractionation processes relate the δ18O of precipitation to air
temperature, precipitation amount, altitude, latitude and distance from the coast. Speleothems
and ice cores are both archives of δ18O . Speleothems are geological cave formations created by
accumulating layers of calcite transported by drip water. Ice cores are created from snow which
becomes ice through compaction. Both archives can thus record the δ18O of precipitation up
to thousands of years, although especially speleothems are rarely dated annually.

Individual proxy records can be strong indicators of past climate changes. Although they can
indicate that something has happened, especially at the regional level, alone they are not able
to exhaustively inform why changes have happened and how these changes are related to the
global climate system. To overcome this fundamental limitation, spatially complete climate field
reconstructions (CFR) are performed for variables such as temperature, precipitation, sea level
pressure, and drought conditions (Jones and Mann, 2004). CFRs provide statistical estimates,
and thus always comprise uncertainties associated to the reconstructed fields.

To inform such reconstructions, proxy records are compiled into proxy networks of global cover-
age over a specified time period. For the last two millennia, the PAGES2k database (Emile-Geay
et al., 2017) provides a large collection of climate proxy record with a significant correlation to
local temperature. As there are numerous ways to interpret and extrapolate information from
such networks, a variety of CFR techniques have been developed and applied. For instance,
Neukom et al. (2019a) and Neukom et al. (2019b) use a range of established CFR techniques
with the PAGES2k database to reconstruct climate variability and refute the existence of glob-
ally coherent warm and cold periods over the last two millennia.

Another important tool to study past climates are climate models. Climate models are sim-
plified and discretized representations of Earth’s climate and its components. They solve the
basic equations of fluid dynamics and thermodynamics on varying levels of complexity for the
atmosphere, ocean and biosphere. Climate models are used to test hypotheses about the climate
system under different boundary conditions (forcings). Since models provide climate fields for
a multitude of climate variables, they can inform why changes happen and how the changes
are connected to the global climate system. In this thesis, the output from Atmosphere-Ocean



1. Introduction 13

general circulation models (GCM) with a water cycle that includes the simulation of water iso-
topes is used. Such isotope-enabled models represent an important advancement in the field of
climate modeling, because they take into account the fractionation effects which occur at phase
changes as evaporation from land and ocean surfaces and condensation during cloud forma-
tion and precipitation (Werner, 2010). Isotope-enabled models have the potential of enhancing
model-data comparison. The simulated values for δ18O of precipitation can be compared to the
δ18O from climate archives like ice cores and speleothems without the need of calibrating δ18O
to temperature or precipitation. Climate models run independently of climate archive observa-
tions. They are only constrained by boundary conditions as e.g. greenhouse gas concentrations,
orography and solar irradiance. In contrast, CFRs usually rely entirely on proxy record data
without using climate models.

In this thesis, a novel approach, which fuses information from both proxy records and climate
models, is investigated. The concept is called Data Assimilation (DA). DA uses observations
to refine statistical state estimates provided by models. It is an extremely versatile concept,
which is applied in a wide range of fields, from navigation and positioning systems in engi-
neering, oceanography, numerical weather prediction to paleoclimatology. DA in the field of
paleoclimatology, which is termed PaleoDA in this thesis, has been applied in particular to
reconstruct the climate of the last millennium (Franke et al., 2017; Franke et al., 2020; Hakim
et al., 2016; Shoji et al., 2022; Steiger et al., 2018; Tardif et al., 2019) but also for time periods
farther back in time as the last glacial maximum (Annan et al., 2022; Tierney et al., 2020) or
the paleocene–eocene thermal maximum (Tierney et al., 2022). Climate reconstructions using
PaleoDA have been used to investigate mechanisms of the climate, for instance, Steiger et al.
(2021) demonstrated how medieval megadroughts in the North American Southwest were con-
nected to oceanic conditions in the Pacific and the Atlantic.

Two popular PaleoDA reconstructions for the last millennium, LMR (Hakim et al., 2016; Tardif
et al., 2019) and PHYDA (Steiger et al., 2018), which have been used in many subsequent data-
analysis studies, rely on non-isotope-enabled models. They use the PAGES2k proxy network
and additional tree-ring data from Breitenmoser et al. (2014) as observational data. This data
consists of proxy records that are dated annually, thus only a fraction of potentially available
ice cores and speleothems. While containing a comparably large set of data, the proxy networks
used by LMR and PHYDA need to be calibrated to climate variables such as temperature and
precipitation because these are the climate variables simulated by conventional, non-isotope-
enabled GCMs. This type of calibration is performed on data from the instrumental period
and is a standard procedure for tree-ring-widths, which is the largest climate proxy type in
the PAGES2k database, but is less suited for other climate proxies. Indeed, for δ18O of pre-
cipitation in the low-latitudes the correlation to precipitation is stronger than for temperature
(LeGrande and Schmidt, 2006). Speleothems and ice cores from such regions, in particular
South America, could contribute to improving reconstructions of regional hydroclimate. In ad-
dition, proxy networks are often biased towards the mid-latitudes of the northern hemisphere
because historically most climate proxy data has been collected in Europe and North America.
Another issue is the suppressed multi-decadal to centennial climate variability in the PHYDA
and LMR reconstructions (Neukom et al., 2019a). This effect can be caused by a variety of
factors. First, trees are known to capture climate variability on the seasonal and annual scale,
but underestimate long-term climate variability on decadal to centennial time scales (Bradley,
2015). Furthermore, climate models also underestimate regional climate variability on multi-
decadal and longer time scales in comparison to long-term climate proxy records (Bühler et al.,
2022; Laepple and Huybers, 2014). On top of that, PaleoDA in itself is a reconstruction method,
that suppresses long-term climate variability in comparison to other CFR methods when using
the PAGES2k database as observational data (see Figure 1 in Neukom et al. (2019a)). A way
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to improve the representation of climate variability could lie in explicitly assimilating archives
that reliably capture long-term climate variability, like speleothems and ice cores. To that end,
isotope-enabled models are needed. Although they have been employed for instance in Okazaki
and Yoshimura (2017), Shoji et al. (2022), and Steiger et al. (2017), these studies focused on
the instrumental era and did not incorporate speleothems, a prominent archive of δ18O.

The overarching goal of this thesis is to reconstruct climate fields for the last millennium from
isotope-enabled GCMs and speleothem and ice core δ18O proxy records using DA. The last
millennium is commonly defined as the time period between 850-1850CE. The orbit of Earth
and ice masses being relatively unchanged during that period, the last millennium is considered
to be a stable climatic period. It is marked by a millennial cooling trend of –0.18 ◦C/kyrs.
Warm and cold multi-decadal periods were not globally synchronized and occurred at different
times (Gulev et al., 2021). Climate variability during the last millennium was mainly caused by
irradiation changes, volcanic eruptions and internal climate variability (Jones and Mann, 2004).
As the density of available proxy records is higher than during every other pre-instrumental
period, it makes for an ideal testbed to study Earth’s natural climate variability.
The proxy record data used in this thesis is provided by the speleothem database SISALv2
(Comas-Bru et al., 2020) and the δ18O database Iso2k (Konecky et al., 2020), which contains
hundreds of ice core records. The chosen DA method is the stationary offline Ensemble Kalman
Filter. To that end, a code framework that allows for the assimilation of δ18O, taking into ac-
count archive characteristics, in particular the low temporal resolution of paleoclimate records,
is developed. The limitations, methodological choices and uncertainties underlying PaleoDA
are elaborated.

The scientific questions that are addressed in this thesis are as follows:

1. What are the characteristics of reconstructed temperature and hydroclimate time series
for the last millennium, globally as well as regionally? How do these reconstructions
compare to existing reconstructions? An interesting test case is the South American
Summer Monsoon region, where existing PaleoDA reconstructions use few local proxy
records.

2. How do the speleothem and ice core records contribute to the climate reconstructions?

3. What is the temporal variability of the CFRs?

4. Five different isotope-enabled models are going to be used in this project. How do inter-
model differences and model-biases affect the PaleoDA reconstructions?

To answer these questions, this thesis adopts the following structure.

Chapter 2 covers the mathematical basics of the DA method that is used in this thesis, namely
the Ensemble Kalman Filter. It is comprehensively derived, including how the different algo-
rithms proceed to calculate the equations efficiently. Furthermore, this chapter bridges the gap
of the general Ensemble Kalman Filter to its application in PaleoDA.
Chapter 3 describes the climate models and the speleothem and ice core proxy record data
used for the Data Assimilation.
Chapter 4 documents the specific implementation of the PaleoDA method for this thesis, pos-
sible methodological choices and how the existing PaleoDA algorithm is adapted to reconstruct
climate fields on multiple timescales.
Chapter 5 pre-assesses and validates the developed framework with prior data-analysis and
by performing experiments based on simulated observational data (pseudoproxies).
Chapter 6 is dedicated to the application of the framework to real proxy data for reconstruct-
ing climate fields for the last millennium. Besides reconstructed global mean values, regional
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fields over South America are analysed and compared to existing last millennium reconstruc-
tions.
Chapter 7 discusses the results obtained in this thesis and chapter 8 provides a conclusion.

The appendix of this thesis comprises a detailed algorithm sketch and the full mathematical
calculations and proofs required for the (Ensemble) Kalman Filter. Moreover, additional figures
for the experiments are provided.



Chapter 2

Mathematical background

The Ensemble Kalman Filter is the Data Assimilation (DA) method used in this thesis. Here,
I give a step-by-step introduction to it. This method builds on a Bayesian foundation (Section
2.1) and the original linear Kalman Filter (Section 2.2). I further elaborate on this linear
approach by introducing the concept of serial observation treatment (Section 2.3), and finally
enter the domain of non-linear problems with the Ensemble Kalman Filter. In the last section
of this chapter I describe how the Ensemble Kalman Filter can be applied for performing CFRs.
An overview of basic linear algebra/matrix calculation definitions used in the derivations can
be found in Appendix C.

2.1 Bayes’ Theorem and the basic iterative scheme

DA comprises different methods which are applied in a wide range of scientific fields. As stressed
in the comprehensive DA review paper by Vetra-Carvalho et al. (2018), common ground for all
DA methods is laid by Bayes’ Theorem, a fundamental theorem of mathematics that was first
published in 1763. Hence, I start by introducing the basic concept of DA via this theorem.
Bayes’ Theorem states that given a prior state estimate X (e.g. provided by a climate model
simulation) and a measurement Y (e.g. a climate proxy record), which are defined by their re-
spective probability functions P (X) and P (Y ), the conditional probability of the state estimate
given the measurement is

P (X|Y ) =
P (Y |X) · P (X)

P (Y )
(2.1)

where

P (X) is the probability of X, called the prior,

P (X|Y ) is the conditional probability of X, given Y, called the posterior,

P (Y |X) is the conditional probability of Y, given X, called the likelihood,

P (Y ) is the probability of Y, called the marginal likelihood.

In most cases, the probability distributions describing X and Y are assumed to be normal.
Normal distributions are uniquely defined by their mean and variance. The variance or standard
deviation is interpreted as the uncertainty of an estimate.

The case for combining models and measurements
In DA, Bayes’ Theorem is used to fuse information from models and measurements to obtain a
new estimate of a state. Doing so can enable reaching a better state estimate than would be ob-
tained by relying exclusively on models and measurements. First of all, a description of a state,

16
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or philosophically speaking, reality, that is not based on any measurements is obviously void
of meaning. Measurements document what is happening, but they do not contain information
on why things happen. To make sense of measurements, models are needed. Models are the
cornerstone of our understanding of reality because they are mathematical descriptions of fun-
damental physical processes. They give a picture of reality, which is physically sound in terms
of the underlying physical descriptions. By deliberately simplifying reality, models capture the
scales that are relevant for the scientific hypotheses they are supposed to test. In the context
of modeling Earth’s climate, models can provide estimates for variables, for which no measure-
ments are available or possible (e.g. the global mean temperature 1000 years ago), as well as
forecasts of future states, which cannot be measured at the present moment. While models
build on describing measurements, once developed they run independently of measurements.

Fusing information from models and measurements with DA combines the best of both worlds.
DA provides state estimates that are based on model estimates, but which are continuously
refined by measurements of reality.

The iterative scheme of DA
The essence of DA lies in applying Bayes’ Theorem iteratively such that a prior state estimate
can be updated when new information becomes available. Thus, DA introduces the dimension
of time into Bayes’ Theorem. It informs how to update a prior model estimate Xf , which I
denote by the superscript f to mark its forecast nature1. The resulting posterior estimate, also
called the analysis estimate, is simply denoted as X in the following.

A key assumption of DA is that a state estimate will only depend on the previous estimate,
which is called the Markovian assumption in probability theory and statistics2. In consequence,
Bayes’ Theorem can be cycled through time and new information from observations can be fed
into the state estimate as this information becomes available.

Not only do new observations affect the state estimates, but also the transition in time by itself.
DA also requires the description of this time transition by a dynamical model M . In the case of
a linear process, M is a transition matrix that describes how the state estimate changes during
the time between the observations.

Repeating the incorporation of new information into the state estimates and the cycling of the
model estimates through time are the essence of DA. This iterative DA scheme thus reduces to
two basic steps.

1. An analysis step, in which a prior forecast estimate (including its uncertainty) is optimally
updated given the available observations and their uncertainties.

2. A forecast step, in which the state estimate is projected onto the next time step via a
dynamical model, where again the analysis equations from the first step are applied.

Throughout this thesis, I adopt the notion of discretized time steps. The notion of optimality
in the analysis step depends on the transition model and the assumed probability distributions.
Various DA methods have been developed to solve different kind of problems.

2.2 The Kalman Filter

The Kalman Filter (KF) has first been introduced by Rudolf Kalman in 1960 (Kalman, 1960).
Although initially a purely mathematical description of an optimal solution for linear filtering,
its practical value has been recognised quickly. For instance, it has been implemented in the

1Data Assimilation has been developed to a large extent in the field of Numerical Weather Forecasting, hence
the name.

2This assumption also makes sense in the context of modeling weather and climate. The models simulate the
next time step starting from the initial and boundary conditions of the present state
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positioning system of the Apollo Guidance Computer, which made the moon landing possible.
I start by introducing definitions and assumptions and mainly follow the steps presented in the
classic textbook by Brown and Hwang (2012) (Chapters 5 and 6).

Notational conventions

In this first part, two dimensions are relevant:

• Nx is the number of variables describing a state (e.g.in the case of climate models, the
number of cells of a discretized climate field).

• Ny is the number of measurements available for one time step (e.g. the number of available
proxy records at a specific time)

Matrices are named by bold capitalized letters, whereas vectors are named by small bold letters
in order to mark the difference to scalar quantities. The shape of variables is denoted in brackets
when they are first introduced.

Process formulation and assumptions

The state estimate that is to be updated by DA is named x. The current time step is denoted
by a subscript k. How this state estimate changes through time is described by a dynamical
process equation, which also incorporate uncertainties (noise). A noisy linear process can be
described by the following type of transition equation

xk+1 = Mkxk + nk (2.2)

for a discrete transition in time from step k to k + 1, where

xk is the state vector at time k (Nx × 1)

Mk is the transition matrix (Nx ×Nx)

nk is the normal noise (Nx × 1) of this model with zero mean and known covariance structure
Qk (Nx ×Nx)

In anticipation of the later application of the Kalman Filter for Paleoclimate DA, the focus
in the presentation here lies solely on optimally updating the prior estimates. Hence, I do
not elaborate further on the forward model M, which has been introduced for the sake of
completeness. A key assumption is that observations stem from the same distribution as the
forecast estimate. Observing the process at step k can be described by applying the so called
observation operator H to the state vector and adding a measurement error. Thus

yk = Hkxk + vk (2.3)

where

yk is the measurement vector (Ny × 1), containing the measurements of the observed state.

Hk is the observation operator mapping the state vector into the measurement space (Ny×Nx),

vk is the measurement error (Ny×1) which is assumed to be normal with zero mean and known
covariance structure Rk (Ny ×Ny).
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For the model and observation noise vectors nk and vk, two additional assumptions are made.
First, it is assumed that both are uncorrelated, which means that their shared expectation value
vanishes

E[nkvk] = 0, (2.4)

and secondly, I assume that the errors are not correlated in time

E[nknj ] =

{
Qk k = j

0 k 6= j
(2.5)

E[vkvj ] =

{
Rk k = j

0 k 6= j
(2.6)

The true state x is not known, but inferred from a forecast estimate which we denote as x̂f . To
mark the difference to the true state estimates are denoted by a hat symbol. The superscript f
denotes that this is the estimate before the incorporation of measurements. The prior estimate
x̂f and the true state x are related through the prior estimation error ef

efk = xk − x̂fk . (2.7)

The prior estimate is assumed to be an unbiased estimator, which means that the expectation
value of the prior estimation error is zero

E[efk ] = E[xk − x̂fk ] = 0. (2.8)

The prior estimation error x− x̂f is characterized by its covariance matrix. The mean error is
assumed to be zero, thus the covariance matrix is equal to the mean squared error3. I refer to
the prior error covariance matrix as Pf

k (Nx ×Nx).

Pf
k = E[efk(efk)

T
] = E[(xk − x̂fk)(xk − x̂fk)

T
] (2.9)

The Kalman Filter provides a new posterior estimate x̂k. This new estimate is defined as a
linear combination of the prior estimate x̂fk , the measurement y and the measurement according

to the prior estimate, Hx̂fk

x̂k = x̂fk + K(yk −Hx̂fk). (2.10)

where K (Nx×Ny) is the so called Kalman gain matrix. It’s precise form will be derived in the
following.
The posterior estimate x̂k has an error with respect to the true state xk. This error ek is also
assumed to have zero mean, thus to be unbiased.

ek = xk − x̂k (2.11)

E[e] = E[xk − x̂k] = 0 (2.12)

This new estimate has a posterior error covariance with respect to the true state which we
denote by Pk (Nx ×Nx)

Pk = E[eke
T
k ] (2.13)

= E[(xk − x̂k)(xk − x̂k)
T ]. (2.14)

Finally, the Kalman Filter can be stated. To simplify the notation, the time step index k is
dropped from the analysis equations.

3The Kalman Filter is in fact very closely related to the least squares method introduced by Carl Friedrich
Gauß in 1795. See Sorenson (1970) for a discussion of this relationship.
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The original Kalman Filter

Theorem 1. Given the aforementioned assumptions and definitions, the Kalman Filter provides
the best linear unbiased estimate in form of the equation

x̂ = x̂f + K(y −Hx̂f ), (2.15)

where the Kalman gain matrix,

K = PfHT (HPfHT + R)−1 (2.16)

minimizes the posterior error covariance P, which is given by

P = (I−KH)Pf (I−KH)T + KRKT . (2.17)

The difference between measurement and prior estimate of the measurement, (y−Hx̂f ) is also
called the innovation, denoted by d.

Proof See Appendix D.1.

Corollary The posterior covariance can also be written as

P = (I−KH)Pf (2.18)

Proof See Appendix D.2.

Simple example of the Kalman Filter
For gaining a first intuition of the Kalman Filter it is useful to explicitely describe the scalar
case, where the state vector contains only one variable and is updated by one measurement. The
prior and posterior error estimate P f and P are thus scalars, as is the observation uncertainty
R. The state vector is projected into the measurement space via a linear function H. Here I
simply assume it is the identity, 1. Then, the Kalman gain from equation 2.16 reduces to a
fraction.

K =
P f

P f +R
. (2.19)

Consider the two following extreme cases. First, R � P f , which means that the observation
uncertainty is small compared to the prior error. The Kalman Gain then becomes one, meaning
that the prior estimate is replaced by the measurement y

x̂ = x̂f +K(y − x̂f ) ≈ x̂f + (y − x̂f ) = y. (2.20)

This intuitively makes sense. On the other hand, if R � P f the Kalman Gain is close to
zero, meaning that the measurement will have no influence on the posterior estimate when the
observation uncertainty is larger

x̂ ≈ x̂f + 0 · (y − x̂f ) = x̂f . (2.21)

This example can be extended to more dimensions, in which not all state estimate variables
are covered by an observation (Nx > Ny). The Kalman Filter uses the relationship between
different variables as captured by the error covariance to inform how one variable is changed by
the measurement of another one.
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Alternative formulation of the Kalman equations
The equations for the Kalman gain and posterior covariance can be rewritten in numerous

ways. A popular formulation uses the inverse of the posterior error covariance matrix, P−1.
This inverse, which is also called the precision, exists if the prior error covariance and the
observation error covariance have an inverse. This is the case for positive definite matrices, a
property that will be used extensively in Section 2.4.

P−1 = (Pf )−1 + HTR−1H (2.22)

K = PfHTR−1 (2.23)

Proof See Appendix D.3.

Hence, K can also be computed from the posterior covariance P, while the previous formulation
proceeds in the other direction. For examples of practical applications where this is preferable
see Brown and Hwang (2012). The formulation in equation 2.23 will be useful for deriving the
serial Kalman Filter in Section 2.3 and Ensemble square root Kalman Filters in Section 2.4.2.

2.3 The serial Kalman Filter

A popular and intuitive implementation of the Kalman Filter involves the serial treatment of
observations. Instead of assimilating all observations at one time step, the observations are
treated serially one after another. As can be shown, this is possible when the observation errors
are assumed to be uncorrelated. The method can be faster than computing the observations
at once because it avoids the matrix inversion for computing the Kalman gain. In the sense of
the iterative DA scheme presented in Section 2.1, the serial assimilation of observations can be
seen as cycling through time steps of length zero, such that the dynamical model M does not
be to be applied.
The concept of assimilating observations serially will be used in a modified form for the multi-
timescale DA algorithm (Section 4.5). I consider it important to be aware of the formal equiv-
alence of the serial formulation and the original formulation presented in Section 2.2 and thus
also introduce the concept formally.

The serial Kalman Filter

Theorem 2. Assume the observations are treated as a vector consisting of a set of observations
{1, . . . n}. Instead of assimilating the observation vector at once, each entry is assimilated one
after another. The observation and its error at each assimilation step reduce to scalars. Each
observation and term of the Kalman gain equations is denoted by an index i to indicate from
which observation the terms stem.
The prior state estimate and error covariance have the index 0. They represent the state
estimate before assimilating the first observation.

P0 = Pf (2.24)

x̂0 = x̂f (2.25)

The updated state estimate gained by assimilating observation i is calculated recursively from
the previously assimilated observations.

x̂i = x̂fi−1 + Ki(yi −Hix̂
f
i−1) (2.26)

The Kalman gain matrix Ki is given by

Ki = Pf
i−1H

T
i (HiP

f
i−1Hi

T +Ri)
−1. (2.27)
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The error covariance matrix at step i is defined as for the original Kalman Filter

Pi = (I−KiH)iP
f
i−1(I−KiHi)

T + KiRiKi
T . (2.28)

After assimilating n observations, the final state estimate and posterior error covariance matrix
are equal to the estimates from the non serial Kalman Filter.

xn = x̂ (2.29)

Pn = P (2.30)

The equality holds when the observation errors are uncorrelated (R is a diagonal matrix) and
is independent of the order in which observations are assimilated.

Proof The derivation of the serial Kalman Filter equations (with the index i for each in-
dividual assimilation step) above is equivalent to the normal Kalman Filter and is hence not
performed. What needs to be proven is the equality of the posterior error covariances and the
state estimates after assimilating all observations, which is not obvious. It requires rewriting
the recursive formulas in a suited way (Appendix E).

2.4 Ensemble Kalman Filters

The original Kalman Filter faces several challenges which make it unfit for modelling weather,
ocean and climate. It is restricted to linear observation operators H and transitions matrices M
and most importantly requires an estimate of the prior covariance Pf . For the case of non linear
models and observation operators, the Extended Kalman Filter (EKF), which uses linearised
versions of model transition and measurement operators, was developed directly after the orig-
inal Kalman Filter. This linearised technique has been applied extensively for oceanographic
modelling, where it tends to produce instabilities and unphysical results (Evensen et al., 2022).
A new, more flexible technique for non linear systems had to be found4.
In the wake of more performant computer systems in the 1990s, Evensen (1994) proposed
blending the Kalman Filter with a Monte Carlo method in form of the so called Ensemble
Kalman Filter (EnKF). The EnKF rapidly became the new standard in Data Assimilation,
especially for numerical weather prediction and is the technique used in this thesis.
The main idea consists of approximating the error covariance estimates with an ensemble of
estimates instead of one single prior state estimate, hence the state estimate vector x̂ becomes
the ensemble matrix X̂. Each state variable is thus described by an ensemble of state estimates.
The ensemble dimension Ne is introduced.
Consequently, the prior error covariance becomes

Pf = E[(x− x̂f )(x− x̂f )T ] ≈ E[(Xf −X
f
)(Xf −X

f
)T ]. (2.31)

This practical approximation is the essence of the EnKF.
Using an ensemble of Ne state estimates, the covariances can be formulated either in sum or
matrix notation. X′ (Nx×Ne) denotes the anomaly from the ensemble mean X (Nx× 1). The
state estimate ensemble mean X of dimension Nx × 1 is often written with repeated columns
as an Nx ×Ne matrix X such that it can be used in the matrix calculations.
The prior forecast error covariance is thus calculated from Xf .

Pf =
1

Ne − 1

Ne∑
i=1

(Xf
i −X

f
)(Xf

i −X
f
)T =

X′fX′f
T

Ne − 1
(2.32)

4For the global positioning system (GPS), where the EKF performs well, it is still the standard.
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Likewise, the terms PfH and HPfHT can be estimated through the ensemble matrix. The
observation operator H is written as a function H in order to underline that also non linear
functions for projecting the state estimation into observation space can be used.

PfHT ≈ 1

Ne − 1

Ne∑
i=1

(Xi −X
f
)(HXi −HX

f
)T =

X′f (HX′
f
)T

Ne − 1
(2.33)

HPfHT ≈ 1

Ne − 1

Ne∑
i=1

(HXf
i −HX

f
)(HXf

i −HXf )T =
HX′

f
(HX′

f
)T

Ne − 1
(2.34)

The EnKF is still based on the assumption of normal estimation and observation errors. How-
ever, it has proven to be a robust approximation also in case of non linear operators and non
normal distributions (Evensen et al., 2022). In the following, the approximation sign is replaced
by an equal sign to keep the notation simple.

2.4.1 The stochastic Ensemble Kalman Filter

The Ensemble Kalman Filter as proposed originally by Evensen (1994) had one shortcom-
ing, which was realized subsequently to its publication (Burgers et al., 1998; Houtekamer and
Mitchell, 1998). The original approach provides a too-small posterior ensemble covariance, also
called filter inbreeding or under dispersiveness. A mathematically rigorous treatment of the
problem was proposed by Leeuwen (1999). Burgers et al. (1998) propose to overcome the defect
by adding random noise, according to the measurement uncertainty, to the observations Y.
This method has been called perturbing the observations and the resulting Kalman Filter the
stochastic Ensemble Kalman Filter. The authors show that perturbing the observations leads to
the correct posterior error covariance in the limit of infinite ensemble size. As the observations
already contain measurement errors, Vetra-Carvalho et al. (2018) proposes the more intuitive
notion that the observations from the prior estimate, H(Xf ), HXf are perturbed by observation
noise Y′ for each ensemble member. The ensemble of observation estimates then becomes

Yf = (H(Xf
1), . . . ,H(Xf

Ne
)) + Y′. (2.35)

The last term denotes the perturbation matrix whose entries εi are noise vectors drawn from a
normal distribution with mean zero and covariance R.

Y′ = (ε1, . . . , εNe) εRNy×Ne (2.36)

For formulating the stochastic Ensemble Kalman Filter, the observation vector y (Ny × 1) is
converted into an observation matrix Y with Ne identical columns. Then, the Kalman update
equation becomes:

X = Xf + K(Y −Yf ). (2.37)

The Ensemble Kalman gain is

K = PfHT (HPfHT + R)−1 (2.38)

=
X′f (HX′

f
)T

Ne − 1

[
HX′

f
(HX′

f
)T

Ne − 1
+ R

]−1

(2.39)
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2.4.2 Ensemble Square Root Kalman Filters (EnSRF)

At the same time as the statistical Ensemble Kalman Filter was proposed, a different Ensemble
Kalman Filter technique was developed, the Ensemble Square Root Kalman Filter (EnSRF).
This technique does not require additional perturbation because it is explicitly designed to give
the correct posterior error covariance. It has the advantage of not adding an additional error
source in the form of sampling error and is therefore elaborated in the following.
Ensemble Square Root Kalman Filters conserve the equation

P = (I−KH)Pf (2.40)

and are therefore also called deterministic EnKFs in contrast to the stochastic EnKF presented
in Section 2.4.1. To introduce the concept of square root filters and understand where the name
comes from, I start by bringing P into a square root formulation following Vetra-Carvalho et al.
(2018), who derive the different solutions of the problem using one consistent and intelligible
notation.
I start from equation 2.40 using the ensemble representation of the covariances:

P = (I−KH)Pf (2.41)

X′(X′)T = (I−PfHT [HPfHT + R]−1H)X′
f
X′

f T
(2.42)

= (X′
f −X′

f
(HX′

f
)T (Ne − 1)−1[HPfHT + R]−1HX′

f
)X′

f T
(2.43)

= X′
f
(I− (HX′f )T [HX′f (HX′f )T + R(Ne − 1)]−1HX′f )X′f

T
(2.44)

Introducing the definitions S := HX′f and F := SST + (Ne − 1)R, the last equation can be
written as

X′(X′)T = Xf ′(I− STF−1S)(X′f )T . (2.45)

Ensemble square root Kalman filter methods find the square root T of the term in brackets.

(I− STF−1S) = TTT (2.46)

Hence the name square root filter.
The matrix T is not uniquely defined and different ways for solving the equations exist. The
challenge lies in finding formulations where the number of elementary mathematical operations
is reduced, for instance by making opportune transformations into subspaces. This is crucial
to avoid the computationally expensive computation of the prior and posterior error covariance
matrices P and Pf , which are of dimension Nx × Nx. As shown by the square root formula-
tion of the Ensemble Kalman Filter derived above, it is sufficient to transform the ensemble
perturbation X′f (Nx ×Ne) via the matrix T, and not the full covariance.
A general formulation of the EnSRF consists of transforming the prior ensemble mean X with
a weight vector w and the perturbations X′ by a weight matrix W′.

X = X
f

+ X′fw (2.47)

X′ = X′fW′ (2.48)

Bringing the mean update into the matrix form W = (w, . . . ,w) εRNx×Ne these equations can
be formulated as one:

X = Xf + X′f (W + W′) (2.49)
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The perturbation weight matrix W′ is derived from the square root equations, and the weight
vector w can then be computed from the ensemble Kalman gain (2.39) or also from the posterior
error covariance as in the alternative Kalman gain formulation (2.23).
The Ensemble square root Kalman Filters which are derived from these equations and have
been implemented for this thesis are listed in table 2.1.

2.4.3 Formulation of the EnSRF in terms of Kalman gains

In many PaleoDA publications which use the Ensemble Kalman Filter, (for instance King et al.
(2021), Steiger et al. (2018), and Tierney et al. (2020)), one will find a particular formulation
of the EnSRF which is usually not found in the original mathematics publications. They state
the EnSRF in terms of the regular Kalman gain for the mean, K and a perturbation Kalman
Gain K̃ using explicit matrix square roots. I introduce the concept here in order to compare
the efficiency of this approach to the regular EnKF formulations later.

K = PfHT (HPfHT + R)−1 (2.50)

K̃ = PfHT [
√

(HPfHT + R)
−1

]
T

[
√

(HPfHT + R) +
√

R]−1 (2.51)

K̃ is a solution of the posterior covariance error equation

P = (I− K̃H)Pf (I− K̃H)T . (2.52)

The proof of this relationship is shown in Appendix F.3.

The regular Kalman gain is then applied to the ensemble mean forecast

X = X
f

+ K(Y −HXf ) (2.53)

and the perturbation Kalman gain is used for updating the ensemble perturbations

X′ = X′f − K̃(HX′f ). (2.54)

The formulation has been introduced by Whitaker and Hamill (2002), where the equations are
applied in form of serial observation treatment as presented in Section 2.3. PaleoDA studies
solved these equations for all observations at once using square root computing functions of
modern programming languages (as scipy.linalg.sqrtm in Python). It is the algorithm im-
plemented in the public PaleoDA codebases PHYDA (Steiger et al., 2018) and DASH (King
et al., 2021). This direct approach introduces additional numerical instabilities (in comparison
to the singular value and eigen value decompositions used in the regular EnKFs). In Section
2.5 the computational efficiency of this approach will be compared to regular EnKFs.

2.4.4 Summary of the methods

The Ensemble Kalman Filters implemented for this thesis are listed in table 2.1 with a refer-
ence to the original publication and where the full derivation can be found in the appendix.
Particularities are noted in the comment column. Python code for all the methods presented
in this thesis can be found in the public repository github.com/mchoblet/ensemblefilters.
It is important to underline the differences and similarities of these approaches. All Ensemble
Square Root Kalman Filters produce the same posterior ensemble mean and posterior error
covariance due to the way how they are constructed. The stochastic EnKF produces the same
mean estimate, but results in a different posterior error covariance estimate due to the additional
noise. The differences are usually negligible. The direct EnSRF solver, called EnSRF (PaleoDA

https://github.com/mchoblet/ensemblefilters
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Method Publication Derivation Comment

Stochastic EnKF Burgers et al. (1998) 2.4.1
Ensemble Transform Kalman Filter
(ETKF)

Bishop et al. (2001) F.1 Two slightly different versions run
under the name of ETKF.

Error-subspace Transform Kalman
Filter (ESTKF)

Nerger et al. (2012) F.5

Ensemble square root Kalman filter
(EnSRF)

Tippett et al. (2003) and
Whitaker and Hamill (2002)

F.2 The first publication proposed an
implementation only treating ob-
servations serially, whereas the sec-
ond proposes a more general imple-
mentation.

EnSRF with serial observation
treatment

Whitaker and Hamill (2002) F.4

EnSRF (PaleoDA version) Steiger et al. (2018) F.3 The authors solved the equations
formulated by Whitaker and Hamill
(2002) at once. In contrast to
the implementation in the PHYDA
code package, I changed the order
of matrix calculation for means of
efficiency.

Table 2.1: Overview of the Ensemble Kalman Filters tested in this thesis.

version) leads to a slightly different mean and covariance estimates due to the direct calculation
of matrix square roots, which introduces negligible imaginary parts. The question of which
algorithm to choose for performing PaleoDA reduces to the aspect of computational efficiency
which is discussed in the next section.

2.5 Computational efficiency of the Ensemble Kalman Filters

The EnKF is the central algorithm of the CFRs performed for this thesis. As these equations are
repeated thousands of times, understanding the speed limitations and optimizing the efficiency
is a crucial task.

The rigorous way for deciding on which algorithm is best consists of performing a computational
complexity analysis by counting the costs of all involved mathematical operations, including
advanced operations as singular and eigenvalue decompositions. This is usually done with the
Big O notation in terms of the problem dimensions Ne, Ny, Nx. Tippett et al. (2003) and
Vetra-Carvalho et al. (2018) performed this type of analysis. Applying their results to a typical
PaleoDA situation, in which there are orders of magnitude more state variables to determine
than ensemble members and observations, Nx � Ne ≈ Ny, gives a leading order of O(Nx ·N2

e )
for all algorithms. Hence, the algorithms should in theory be equally fast, but one must also
be aware that the theoretical efficiency calculations cannot be transferred one to one to the
Python implementation used in this thesis. In the numpy package for efficient matrix and vector
calculations, some calculations are automatically parallelized whereas others are not.

To be able to decide which algorithm is the fastest I performed a non comprehensive test
with typical PaleoDA dimensions on two different machines. The test data has the following
dimensions:

• Ne=100, which corresponds to an ensemble size sufficiently large to capture the model
covariance structure.

• Ny=100. The number of observations will in general fluctuate between a two and three
digit number.
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• Nx=50000. The number of grid cells in a typical simulated climate field, multiplied
with the number of variables which are reconstructed, e.g. 3 for surface temperature,
precipitation and δ18O .

These dimensions define the size of the four involved matrices:

• Xf , the ensemble of prior states (Nx ×Ne).

• HXf , the ensemble of prior observations estimates (Ny ×Ne).

• Y, the vector containing the observations (Ny × 1).

• R, the error variance associated with the observations, which are assumed to be uncorre-
lated and hence given as a vector (Ny × 1).

The workstations used for the tests are called Ravenclaw and Gryffindor. Ravenclaw has 8 avail-
able single-thread cores of the type Intel(R) Core(TM) i7-9700K CPU (2018) and Gryffindor
16 dual -thread core of the type AMD Ryzen 9 5950X (2020). Both offer a maximum frequency
of up to 4.9 GHz. Gryffindor has more RAM (128gb instead of 64gb) and will thus be used for
the CFRs in this thesis. For a statistical assessment of the algorithm speed, I use 10 samples,
where each sample consists of 100 repeated calculations. The uncertainty is calculated from the
standard deviation of the different sample means.

Method Ravenclaw Gryffindor

EnSRF 65.6± 2.0 46.7± 0.2
EnSRF (PaleoDA version, unoptimized) 133± 38 86.1± 0.2
EnSRF (PaleoDA version) 33.5± 0.9 34.1± 0.1
EnSRF (serial) 3310± 31 2900± 4
ESTKF 23.4± 0.2 23.0± 0.1
ETKF 23.3± 0.2 22.8± 0.1
ETKF (adaptation) 23.6± 0.2 23.4± 0.1
Stochastic EnKF 21.2± 0.4 19.1± 0.1

Table 2.2: Calculation time of the Ensemble Kalman Filter algorithms presented in Section 2.4
for two different machines, in [ms]. Machine specifications are presented in the text above this
table.

On both machines, the stochastic EnKF is the fastest algorithm, closely followed by the ETKF
and the ESTKF. The fact that Gryffindor has more available cores does not result in a significant
speed increase for these algorithms. Surprisingly, the serial EnSRF is two orders of magnitude
slower than the fastest algorithm, in spite of a having a similar theoretical complexity. As
previously reported in Steiger et al. (2018), the direct solver of the EnSRF (PaleoDA version)
is significantly faster than the serial assimilation. I suppose that the slowness of the serial
assimilation comes from the fact, that the loop over all observations is slow in an interpreted
language like Python, and that it can not easily be parallelized because the iterations are
not independent. The serial EnSRF only computes on one core, whereas all other methods
automatically use all available cores.

The table also contains the result for the PaleoDA EnSRF as used in Erb et al. (2022), denoted
as unoptimized. The results show the pernicious effects that not optimally aligned matrix
vector products can have. This code is two to three times slower than the rearranged version
implemented for this thesis.



28 2. Mathematical background

Due to the additional noise, I will not use the stochastic EnKF but the ETKF. One important
aspect which has been not mentioned yet, is that for the covariance localization scheme presented
in Section 4.4.2 the ETKF can not be used, and one has to rely either on the stochastic EnKF,
the EnSRF (PaleoDA version) or the serial EnSRF.

2.6 Towards paleoclimate Data Assimilation

Up to this point, the description of the DA techniques has been kept general and close to its
mathematical foundations. When applying DA for CFRs, adaptations and simplifications to
the general methodology need to be performed. As a consequence, PaleoDA literature might
appear confusing to the reader who knows the general formulations of the Ensemble Kalman
Filter as presented in the previous chapter (Section 2.4) but has not been introduced to the
peculiarities of PaleoDA. Therefore the aim of this section is to bridge the gap between general
DA and PaleoDA by introducing the key methodological differences. In the next chapter, the
concepts presented in this overview will be deepened and substantiated in the context of the
data available for my project.

2.6.1 Assimilation of time-averaged quantities

A fundamental difference when assimilating paleoclimate data lies in the fact that the climate
observations do not represent instantaneous values, but means over longer time resolutions.
Depending on the climate archive type and the time studied, proxy records can represent mean
values over a season, years, decades or centuries to millennia. In contrast, the EnKF as such is
designed to instantaneously assimilate and update estimates in discrete time steps. The effect
of treating observations as time-averaged values has been studied first in Dirren and Hakim
(2005) who proposed extending the EnKF to averaging both observations and state variables.
Subsequently Huntley and Hakim (2010) studied this approach with a more complicated at-
mospheric model and also mathematically showed the equivalence of the time averaging and
instantaneous approach. The essence is that both the Kalman gain operator, which consists
of covariance matrices, and the time averaging operator are linear and hence commute. As a
result, assimilating time-averaged observations with time-averaged state variables leads to the
same results as the instantaneous approach when the instantaneous estimates are averaged after
the assimilation. Huntley and Hakim (2010) also showed, that if the averaged quantities and
perturbations from the time averages do not covary, not only the assimilated time averages,
but also the perturbations are equal for both approaches. This second part is not a necessary
assumption for the DA performed here.
Some PaleoDA studies stress the fact that they assimilated time-averaged observations. Others
tacitly assume the equivalence and do not mention the difference at all. To summarise, it can
be said that assimilating time-averaged quantities is mathematically equivalent to assimilating
instantaneous values. However, for real climate proxy records it is not unambiguous on what
precise time scale they actually represent time-averaged values. This will be addressed in Section
4.5 when introducing the concept of multi-time scale DA.

2.6.2 Offline Data Assimilation

DA for CFRs can also be performed by using the mean model climatology for the ensemble
covariance. The model climatology is not informed by the prior assimilation steps and the
dynamical model/transition matrix M becomes irrelevant.
Dirren and Hakim (2005) and Huntley and Hakim (2010) tested this approach when investi-
gating the effect of assimilating time-averaged quantities. They did so to evaluate the loss of
forecasting skill for longer timescales and found that over longer averaging-times, the model
climatology has as much forecasting skill as the forecasts based on updated initial conditions.
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This issue is closely linked to the fundamental topic of predictability of the climate system. The
term predictability can be understood as the inherent memory of the climate system, which is
of chaotic nature. The less predictable a system is, the more important boundary conditions
instead of initial values are to describe it properly. This is the case for the transition from the
prediction of weather, which acts on hourly to daily timescales, to the prediction of decadal and
centennial climate, as visualized in Figure 2.1

Figure 2.1: Visualization of the decreasing importance of initial values for long term climate
predictions. Taken from AR5 of the IPCC (Kirtman et al., 2013).

In Huntley and Hakim (2010), in addition to using the mean climatology for the covariance,
the authors propose that the forecasting step could be skipped when assimilating climate proxy
records which are of annual or longer resolution. They argue, that due to the predictability
limit the mean climatology can be a prior ensemble as reliable as the model forecast informed
by prior measurements. Thus, constraining initial conditions of a climate simulation becomes
irrelevant. A similar argument was brought forward independently by Bhend et al. (2012).

This approach saves a lot of computation time. Cycling an ensemble of complex climate models
is extremely expensive and could at most be performed for models of intermediate complexity.
The no cycling approach has been named offline DA, in contrast to regular online DA. It
fundamentally changes DA as no information is propagated through time and initial conditions
of a model simulation do not need to be adjusted. Data from already performed simulations,
for instance taken from coupled Atmosphere-Ocean-GCM simulations can be applied directly
to the observational data. For that reason, Offline Ensemble Kalman Filtering has also been
called Ensemble Kalman Fitting (Bhend et al., 2012; Franke et al., 2020), which is a more
precise name.

It is important to distinguish between two types of Offline Data Assimilation approaches that
can be found in the literature. The terminology follows Okazaki et al. (2021).
In stationary offline DA, the prior is taken from a collection of climate states, which can stem
from one to many model simulations. The prior is the same for each assimilation step and
thus does not contain temporal information. It is computationally efficient because it does not
require an ensemble run. Transient offline DA also does not require running an ensemble of
climate models based on observations. However, it requires a large ensemble of different already
ran simulations, for instance based on one model with a set of perturbed parameters. For
each assimilation step the prior consist of the ensemble estimates for the current time of the
assimilated proxies. Like this, temporal information from the models is kept. This approach
has been followed in studies by Annan and Hargreaves (2012), Bhend et al. (2012), Franke et al.
(2017), and Goosse et al. (2006).

Online Data Assimilation is rarely used in PaleoDA. It has been used in combination with
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particle filters (selection of matching ensemble members, see Section 2.6.3) as by Dubinkina
et al. (2011), Goosse et al. (2010), and Goosse et al. (2012). Matsikaris et al. (2015) compared a
best matching ensemble member particle filter method which was performed online and offline
and found no improvement for the online DA product. Yet, this study only used a simple DA
method and not an advanced technique as the EnKF.
A recent study by Okazaki et al. (2021) re-elaborated the comparison of both with a model of
intermediate complexity for the atmosphere, SPEEDY (Molteni, 2003) , coupled to a simple
slab ocean model. In experiments with simulated observations, so-called pseudoproxies (see
Section 4.3), they confirmed previous hypotheses that online DA outperforms offline DA when
the time over which observations are averaged is shorter than the predictability of the climate
model. For variables describing the ocean, the online DA product was closer to the truth than
the offline DA product. Typical predictability timescales for the ocean are orders of magnitudes
longer than for the atmosphere.
However, online PaleoDA is still in its very early stages. A promising method has recently
been brought forward by Perkins and Hakim (2021). The authors emulated climate fields from
a full GCM with a linear inverse model in order to add dynamical memory into the climate
reconstruction.
Stationary offline DA is now a well established CFR method and is also computationally cheap
to perform. Therefore it is the method used throughout this thesis. The construction of the
prior is outlined in Section 4.7.

2.6.3 Other DA methods than the EnKF

Before the EnKF became the dominant method for PaleoDA, other DA concepts have been
developed, and in part also been applied to paleoclimatic data. One recurring argument in favour
of using DA for reconstructing past climates is the reconstruction of dynamically/physically
consistent fields. However, it is important to stress that the meaning of this physical consistency
actually depends on the applied method. For the EnKF it relates to the covariance structure
provided by the simulation.
The first study to apply DA for paleoclimate reconstruction based on observations and sim-
ulations used pattern nudging technique (Storch, 2000). It was designed for reconstructing
atmospheric circulation patterns close to prescribed target patterns. Another pioneering work
introduced so-called forcing singular vectors (Barkmeijer et al., 2003). These methods have not
been tested for climate variables as temperature and precipitation and have in general not been
used in recent years.
A DA method commonly used for CFRs is the Particle Filter (PF). The idea behind PFs is
simple. A cost function for comparing observations and simulated values is defined and based
on it the best matching ensemble members are selected. The implementation can range from
the simple selection of one best matching member to the calculation of a weighted mean of
multiple ensemble members after applying an importance resampling technique. Studies as
Goosse et al. (2010), Goosse et al. (2006), and Matsikaris et al. (2015) have used the simple
best matching ensemble member approach, whereas Annan and Hargreaves (2012), Dalaiden
et al. (2020), Dubinkina et al. (2011), and Goosse et al. (2012) implemented a sequential Monte
Carlo method for estimating weights for a collection of best matching ensemble members. The
PF has been used in both offline and online PaleoDA with climate models of intermediate
complexity and also climate proxy records.
In principle, the PF is more versatile than the EnKF because it does not rely on the assumption
of normal distributions. However, in practice so-called filter degeneracy, where one ensemble
member gets all weight despite using a resampling technique, can occur. A consequence is that
the posterior uncertainty is underestimated. Liu et al. (2017) compared PF and EnKF for
simulated observations and found that the EnKF, in the respective experimental setting of that
study, is more reliable and efficient than the PF.
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2.6.4 Influence of proxy records and model priors in the Offline EnKF

This section is dedicated to emphasise the main mechanisms behind using the offline EnKF. Us-
ing a static prior ensemble for each assimilation step (typically yearly) means that in the recon-
structed climate signal the temporal variability stems entirely from the measurements/climate
proxy records.
The climate model prior is a collection of randomly selected climate states and its main purpose
lies in providing representative observation estimates and a complete climate field. The Kalman
gain is computed from the covariance between the observation estimates and the climate field.
The relationship between the two informs how information from measurements are spread to all
simulated climate variables, even to variables that are not directly measured. For instance, tem-
perature and precipitation can be inferred from δ18O via the covariance inherent to the model
simulations. The covariances/correlations between remote locations usually monotonically de-
crease with geographic distance. However, long-ranging correlations, called teleconnections can
exist even beyond continental length scales. Teleconnections are especially important when few
climate observations are available. As will be presented in chapter 3, especially for the first half
of the last millennium proxy records for less than 100 locations are available annually, whereas
the total climate field is described by ≈ 106 variables.
With respect to the influence of the proxies in the offline EnKF, recall that these appear in
the innovation part of the Kalman Filter equations, y −HXf . The observations are compared
to the mean observation estimate from the climate model. To avoid being affected by climate
model biases many PaleoDA studies do not assimilate absolute values, but anomalies. The
implications of this choice will be discussed in more detail in 4.8.

In short, climate reconstructions with the offline EnKF are informed

1. temporally by the climate proxies

2. spatially by the climate model simulations used for the prior.

Stationary vs transient model covariance
An important methodological assumption is the temporal stationarity of the covariance patterns
from the models. For a comparably stable period as the late Holocene, this is a reasonable
assumption. For studies over longer timescales, e.g. transient periods like the last deglaciation,
assuming a static covariance structure is less appropriate. Studies by Erb et al. (2022) and
Osman et al. (2021) used a selection of climate states which move through time, allowing for
the model covariance to change. Although close to transient offline-DA as described in Section
2.6.2, it is yet another approach because only one (respectively two) climate models were used
as a prior.

The averaging kernel
In PaleoDA, it is not usual to estimate the potential influence of the prior and the proxy record
locations on the reconstruction. In remote sensing, however, the concept of the averaging kernel
A has been established (Rodgers, 2000). It is used to quantify how much the measurements
of specific variables of the state vector can influence the other variables and how the posterior
error uncertainty will be reduced. It is calculated from the Kalman gain and the observation
operator.

A = KH = cov(Xf , HXf )[cov(Xf , HXf ) + R]−1H (2.55)

In fact, one could also study the Kalman gain for each proxy record location. Recalling Equation
2.18 for the reduction of the posterior error covariance, we see that I − A is the fraction
of posterior to prior uncertainty. Thus the larger A, the smaller the posterior uncertainty.
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However, the averaging kernel is not directly applicable in the context of PaleoDA due to the
peculiar way of applying the observation operator H (Section 2.6.5), for instance with non-
linear functions (fractionation for speleothems) or the application to monthly instead of annual
values for the precipitation and infiltration weighting. To make use of the concept one could
assume that H is simply a vector with entries equal to one for the grid cells closest to the proxy
record locations and zero for the rest. This way, each non-zero column of A represents one
measurement location and how it influences the climate variables at each grid cell. Whereas
this allows for studying the influence of each proxy record location on the reconstruction one
after another, a more practical assessment of all proxy record locations at once consists of
summing up the elements of each row of A, which is called the area of the averaging kernel.
It represents the response of each grid cell variable to a unit measurement at all proxy record
locations.

2.6.5 Proxy System Models as observation operators

Until now, I generally referred to the function mapping the climate field from the model to
the observation estimates as the observation operator H (as in Equation 2.35). Initially, this
mathematical operator which is applied to the state vector containing all climate state variables
was assumed to be a simple linear operator. As discussed previously in Section 2.4, when using
the EnKF it is a valuable approximation to use non-linear observation operators. PaleoDA goes
beyond applying H to the model data at a specific time to obtain the observation estimate.
For instance, H also processes information from other timescales like monthly data although in
the end yearly means are assimilated, or when the low-pass filtering effects of climate archives
are simulated information from various years is mixed. Given a prior climate state, which is
represented by a discretized climate field for variables as temperature, precipitation and δ18O ,
such an operator/function H has to answer the following question:
Which physical, chemical, biological and geological processes do we need to add to the simulated
variables in order to reproduce the typical signal of a specific climate archive?
It is important to stress, that this approach is a forward approach instead of the inverse ap-
proach which is often used in order to translate a paleoclimatic observation into a climate
variable, for instance by paleothermometers (e.g. in noble gas thermometry (Aeschbach-Hertig
and Solomon, 2013)).

In Paleoclimatology the observation operators are called proxy system models (PSM). PaleoDA
is just one field of application of PSMs, which have been developed to better understand the
climate signal captured by climate archives, their uncertainties and enhance model data com-
parison. Evans et al. (2013) introduced a general concept for PSMs. A PSM describes the
different stages of influence on the climate signal, which are: Environment, Sensor, Archive and
Observation.The environment is characterised by climate variables such as temperature, precip-
itation, humidity and pressure. This external influence is at first captured in direct response
to it via a sensor model. The transformed climate signal is encoded into an archived form,
a long-term signal via an archive model. At last, it needs to be reproduced how the climate
archives are sampled by the researchers to obtain observation. The processes of measurement
and dating uncertainties is captured by a separate observation model.

In recent years, many different PSMs have been proposed by the respective expert climate
archive researchers, for instance for tree rings, corals, ice cores, boreholes, lake and marine
sediments and speleothems. PSMs exist on various levels of complexity, which depend on the
specific scientific questions and the climate variables which are available. An overview of var-

5H is also called a forward model in PaleoDA, although this terminology might cause confusion because in
regular DA the forward operator denotes the dynamical model that projects the forecasts in time.
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ious concrete PSMs and how they fit into the theoretical framework of PSMs can be found in
Evans et al. (2013). Dee et al. (2015) and Okazaki and Yoshimura (2019) specifically assessed
PSMs for water isotopes. Whereas PSMs in the field of tree rings have existed for decades, in
the case of marine sediment proxies, PSMs have been developed only recently, see for instance
Malevich et al. (2019), Tierney and Tingley (2015), Tierney and Tingley (2018), and Tierney
et al. (2019). In the next chapter, PSMs for speleothem and icecore δ18O will be introduced in
detail. In PaleoDA practice, often PSMs of low-complexity are chosen. In fact, most PaleoDA
studies even fall back to linear regression calibrations on data from the instrumental period,
which is not directly physically motivated.

The role of PSMs in PaleoDA
In general, PSMs are meant to reproduce signal timing and the mean state of a proxy record,
the spectral characteristics of a climate archive and its relationship to the global/local climate
field (e.g. the covariance relationship to the climate at other locations).
For the specific purpose of stationary offline EnKF only two of these goals are relevant. As
the assimilation is performed offline, the observation estimates from the model do not need to
match the climate proxy in time. They provide an estimate of the range of values provided by
the model for these proxies, their mean value is compared to the proxy in the innovation part of
the Kalman Filter equations. Thus, only the mean state and not the signal timing is relevant.
In case of assimilating climate anomalies with a static prior, this mean value will effectively be
set to zero and hence not be relevant. Second, the observation estimates appear in the Kalman
gain in the form of the covariance to the whole climate field. The covariance, which is weighted
by the variance of the observation estimates and the proxy error (see Equation 2.16) informs
the algorithm how the observation information is spread over the entire climate field. When
evaluating the PSMs and performing reconstruction, these initial goals and mechanism need
to be considered thoroughly. Furthermore these considerations serve to assess to which extent
more realistic/precise PSMs are meaningful in PaleoDA.

2.6.6 Overview of climatic settings and phenomena studied with PaleoDA

After having mentioned a variety of PaleoDA studies with a primary focus on their methodology,
I would now like to give a brief overview of the different temporal and spatial climate settings
that have been investigated. PaleoDA using data from paleoclimate records has first been con-
ducted for the climate of the last two millennia (Goosse et al., 2012; Hakim et al., 2016). This
time period also represents the time frame targeted by most PaleoDA reconstructions due to the
availability of large proxy networks as the PAGES2k database (Ahmed et al., 2013; Emile-Geay
et al., 2017). Two outstanding (and methodologically similar) projects have provided climate
fields for the last millennium and have been used in a number of subsequent data analysis stud-
ies. The Last Millennium Reanalysis (LMR) (Hakim et al., 2016) reconstructed temperature
fields from the PAGES2k dataset, whereas the Paleo Hydrodynamics Data Assimilation prod-
uct (PHYDA)(Steiger et al., 2018) in addition to temperature precipitation fields and various
hydroclimatic indices, based on a different model prior and an extended proxy dataset. Three
years after its original publication, the LMR obtained an update based on more elaborate PSMs,
an extended proxy record database and also reconstructing precipitation and climate indices
(Tardif et al., 2019). Both LMR and PHYDA did not use isotope-enabled models as a prior.
The reanalysis datasets have been used, inter alia, to look at the global response of the climate
system in temperature and hydroclimate to volcanic eruptions (Tejedor et al., 2021a; Tejedor
et al., 2021b; Zhu et al., 2020). A more regional, though globally important phenomenon
that has been studied using these datasets/code frameworks is El Niño-Southern Oscillation
(ENSO) (Dee et al., 2020; Dee and Steiger, 2022; Sanchez et al., 2021; Zhu et al., 2022). For
reconstructing ENSO, which is also considered a central mode of internal climate variability
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over the last millennium, proxies as corals which are near to the central pacific region are
crucial. However, it is important to be aware of the fact that LMR and PHYDA mostly rely
on hundreds of non curated tree ring records, where the applied statistical PSM (see Section
4.1.4) automatically selects meaningful records. The LMR and PHYDA reconstructions have
been compared to other reconstruction methods and used for a multi-CFR-method mean to
study climate variability (Neukom et al., 2019a) and reject the existence of global warm- and
cold-periods over the last millennium (Neukom et al., 2019b).
Apart from LMR and PHYDA, reconstructions using only selected, high-quality networks of
tree ring data (width and density) have been performed as in King et al. (2021). Due to their
geographic locations, tree rings are particularly meaningful for reconstructing the climate on the
Northern Hemisphere. Several studies also investigated the influence of seasonal biases inherent
in these proxies on the reconstruction. Such high-quality, mostly tree-ring based datasets have
also been used to reconstruct climate fields for the second half of the last millennium on a
monthly instead of a yearly time scale by Franke et al. (2017), Franke et al. (2020), and Valler
et al. (2019). These three studies used a transient offline EnKF rather than a stationary offline
EnKF. Periods of specific interest in PaleoDA for the last millennium are the warm medieval
climate anomaly, see for instance Goosse et al. (2012) and the so-called little ice age as studied
in Neukom et al. (2019b). Recent studies have focussed on reconstructing the climate of polar
regions, as done for Arctic Sea Ice (Brennan and Hakim, 2022) and surface air temperature in
Antarctica using water isotopes and snow accumulation (Dalaiden et al., 2020).
Going back deeper in time, Badgeley et al. (2020) reconstructed temperature and precipitation
over the Greenland ice sheet during the last 20000 thousand years. Erb et al. (2022) performed a
global temperature reconstruction for the entire Holocene (the last 12,000 years) using terrestrial
and marine sediment proxies. A PaleoDA reconstruction of the last 24,000 years, reaching
back into the Last Glacial Maximum (LGM) was carried out by Osman et al. (2021) using
marine sediments only. The aims of these two studies are, among others, reaching a better
understanding of the mechanism of climate variability during the transition from the Last Glacial
Maximum (LGM) to the Holocene and investigating the hypothesised mid-Holocene warming,
which is also called the Holocene temperature conundrum (Liu et al., 2014). The alleged peak
cooling of the LGM has been reconstructed globally with a single, isotope-enabled model prior
in Tierney et al. (2020) and using a multi-model ensemble by Annan et al. (2022). These
studies provide a single time reconstruction instead of a time series reconstruction. Besides
elucidating the nature of this extreme climatic condition these reconstructions have also been
used to estimate Equilibrium Climate Sensitivity (ECS), which is the warming of Earth’s climate
in response to a doubled CO2 content in the atmosphere (from 260ppm to 520ppm). A similar
single time fit has recently been presented for the Paleo-Eocene Thermal Maximum (PETM)
and the period preceding it, 56 million years ago, which is also a valuable reference period for
estimating ECS due to its higher temperature and CO2 concentration (Tierney et al., 2022).

Classification of this thesis in the PaleoDA landscape
Although many PaleoDA reconstructions of the last millennia exist, none of them have incor-
porated the SISALv2 speleothem and the Iso2k water isotope databases (here I use the ice core
records) and systematically worked with a variety of isotope-enabled simulations. The SISALv2
and Iso2k proxy networks could contribute meaningfully to temperature reconstructions, espe-
cially as they also capture long-term climate variability. Incorporating speleothem and ice core
data into PaleoDA algorithms requires a careful and thought-out concept, which this thesis aims
to provide. Speleothem and proxy records are also of particular interest for regions which are
almost not covered by the proxy networks used in the PaleoDA studies mentioned above, for
instance low-latitude regions like the Amazon region or high-latitude polar regions. Prototype
regional reconstructions will be tested throughout this thesis, not only for temperature but also
for the less understood hydroclimatic conditions over the last millennium.



Chapter 3

The Data

3.1 Isotope-enabled climate model simulations

The last millennium climate model simulations used in this project are ECHAM5/MPI-OM
(short ECHAM), GISS, iCESM, isoGSM and iHadCM3. They are described in table 3.1. The
simulations are the same as studied in Bühler et al. (2022). This publication also contains an
extended description of the simulation runs. All models are coupled atmosphere- and ocean-
GCMs, except for isoGSM. IsoGSM is an atmosphere-model which is forced by sea surface
temperature and sea ice prescribed from a simulation run of the CCSM4 model.

The output of the simulations is provided in the form of monthly mean values, which are
averaged to annual means in the PaleoDA algorithm. The simulated climate variables used
in this thesis are surface temperature (tsurf), precipitation (prec), evaporation (evap), δ18O
of precipitation (δ18O ) and when available, sea level pressure (slp). In case only latent heat
(lh) is provided, evaporation is computed via equation 4.4. Special preprocessing required for
handling faulty δ18O values is described in the next paragraph.

Preprocessing of model data δ18O
A fraction of the simulated monthly δ18O values exhibits two types of problems. First, unphysi-
cal δ18O values are present, either extremely negative or positive. This problem is dealt with by
defining global thresholds of −60h to 15h and setting values that exceed these boundaries to
not a number (NAN). In addition, for low latitudes within the boundaries of -50◦S and -50◦N,
the valid range is refined to −30h to 15h. Also without this masking of extreme values, the
data already contains NAN values. This makes sense if there is no precipitation in a grid cell
during a month, but it also appears when there is precipitation. This effect is pronounced
in arid regions like the Sahara or the Middle East and is usually a consequence of numerical
instabilities caused by small evaporation and precipitation numbers. In the models ECHAM5,
iCESM and iHadCM3 real values are missing over several years for these extreme regions.

NANs can constitute a problem when all months of a year are NAN, such that no yearly mean
for a grid cell can be computed. NANs cause the PaleoDA algorithm to fail and explicitely
skipping NANs in the algorithm would provide covariances based on too few values. To avoid
these problems from the start, all NANs were replaced by spatially interpolated values. The
last row of table 3.1 documents the percentage of monthly values that were interpolated. The
approach used here can be considered a crude approach to deal with NANs. However, the
percentage of replaced values is only small and in the end annual/seasonal means are computed.

In the model iHadCM3 the values for all grid cells are missing, for the entire years 1426, 1427
and 1428. Spatial interpolation can thus not provide any values, and temporal interpolation
of monthly values would also not be sensible. Incorporating an option to skip these years in
the reconstruction code is incompatible with the multi-timescale reconstruction used in this
thesis. Therefore, the values of year 1425 are simply copied three times when computing an-
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Model ECHAM5/MPI-OM GISS ModelE2-R iCESM1 isoGSM iHadCM3

Reference Sjolte et al. (2020)
Werner et al. (2016)

Lewis and LeGrande (2015)
Colose et al. (2016a)
Colose et al. (2016b)

Brady et al. (2019)
Stevenson et al. (2019)

Yoshimura et al. (2008)
Bühler et al. (2021)
Tindall et al. (2009)

Spatial resolution 3.75◦ × 3.75◦ 2.5◦ × 2◦ 2.5◦ × 1.875◦ 1.875◦ × 1.875◦ 3.75◦ × 2.5◦

Grid cells 96 × 48 140 × 90 144 × 96 192 × 94 96 × 73

Time (AD) 850-1849 850-1849 850-1850 851-1850 851-1850

Climate variables
tsurf, prec,
δ18O , evap

tsurf, prec,
δ18O , evap, slp

tsurf, prec,
δ18O , lh

tsurf, prec,
δ18O , lh

tsurf, prec,
δ18O , evap, slp

Interpolated δ18O
values [%]

3.8 0* 0.05 4.3 0.26

Reported biases warm, wet and positive
δ18O bias over Antarctica

problems in convection
changes, clouds and isotope
kinetics over Antarctica

small negative δ18O
biases across the land
surface, overestimated
convection in mid-latitude
oceans

underestimated
isotopic deplection
over Antarctica

overestimated
local evaporation

Table 3.1: Brief description of last millennium simulations used in my project. This table is a
reduced and adapted version of the table presented by Bühler et al. (2022). There, references to
orbital parameters, GHG concentrations, vegetation, volcanic forcing and total solar irradiance
configurations, as well as more detailed model descriptions can be found. The GISS model
did not exhibit NAN values at first, but had to be detrended due to a significant drift. The
procedure is described in the text.

nual/seasonal means. Three repeated values have little effect on the model covariances, which
are computed from hundreds of simulation years.

The GISS simulation showed the peculiar behaviour of an extreme δ18O drift over regions
of Antarctica. This trend starts to be visible in the global mean after 300 years, but starts
at different dates and accelerates towards the end of the simulation. The drift is visualised
in Appendix B.1. Unfortunately, the authors of the simulation did not provide a simulation
without this behaviour. The data was debiased with a fourth order polynomial to all grid cells
which exhibit a trend for the δ18O time series (detected with an augmented Dickey–Fuller test
and a p value of 0.05). In future studies a GISS simulation with a less pronounced δ18O drift
should be used, especially if δ18O values from Antarctica ice cores are assimilated.

3.2 Speleothem records

Speleothems are geological formations created by the accumulation of calcium carbonates like
calcite and aragonite. This accumulation happens via drip water, which is precipitation water
that has traveled through the soil above a cave and has become supersaturated in carbonates.
Inside the cave this water then precipitates in form of speleothems (Bradley, 2015). By taking
into account these processes, δ18O measured in speleothems can thus be linked to δ18O in
precipitation. In Section 4.1.1 these processes are outlined in detail, which is crucial for making
simulated δ18O and measured δ18O comparable. Speleothems grow over time scales of up to
tens of thousands of years and can be precisely dated using uranium–thorium dating on seasonal
to centennial scales.

3.2.1 The SISAL database

An international working group of speleothem experts affiliated to the Past Global Changes
project (PAGES) have compiled hundreds of speleothem δ18O and also δ13C records into the
well-documented and screened SISAL database (Atsawawaranunt et al., 2018; Comas-Bru et
al., 2020). The collected records cover 130,000 years of past climatic history, from the last
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interglacial over the last glacial maximum until the past two millennia. The database has been
made easily accessible to enable regional climate reconstructions and model-data comparison.

From the updated SISALv2 database, the δ18O time series and corresponding measurement
precision for records covering the years 0 until 2013 CE were extracted. The proxy record time
series will be further cut in time in the PaleoDA algorithm. At first, the records are kept as long
as possible for a more precise assesment of the time resultion. For the time axis, the original
chronology (interp age) was used. Dating uncertainties and alternative age models were not
considered in this thesis. The proxy record time series are stored in a simple time-site data table,
where non-existing values are denoted as NAN. I only kept speleothem records that have at least
one sample measurement in the period from 1700 to 1800CE, because this period was later used
as a reference period for the reconstruction of anomalies. I require that the speleothem records
span at least 300 years. Besides the raw values, site metadata as the site id, name, latitude,
longitude, karst type (mineralogy) and elevation where saved for each cave.

After this preliminary procedure, the speleothem proxy data table reduces to 108 speleothem
records. The speleothem record locations and their median time resolution are plotted in Figure
3.1. The selection offers a good coverage of the terrestrial low and mid-latitudes, except for
the African continent. Most speleothem records are available for Central Europe, the low- to
mid-latitudes of the Americas and
East Asia.

A bar plot of the median time resolutions and the availability of records per year are plotted
in Figure 3.2. The number of annualy available speleothem records steadily increases from less
than 20 in the first millennium to almost 40 in the 19th century, before dropping in the 20th
century. The median time resolution of the speleothem records is broadly distributed, ranging
from annual to multi-annual and multi-decadal resolutions.

3.3 Ice core records

Ice cores are created by the compaction of accumulated snowfall over large ice sheets, when
the snow survives the ablation during the summer season. The δ18O measured in ice cores
can constitute a reliable climate proxy for past atmospheric conditions over up to hundred
of thousands of years (Andersen et al., 2004; Augustin et al., 2004). Ice core layers can be
dated down to years and seasons for the past millennia (Bradley, 2015). However, the dating is
considered less precise than for speleothems due to the counting of snow layers relative to other
layers. However, the interpretation of the ice core δ18O signal is impeded by uncertainties in
the relationship to other climate variables due to depositional and post-depositional processes.
Processes which need to be taken into account are outlined in Section 4.1.1.

3.3.1 The Iso2k database

The ice core δ18O proxy records used in this thesis are taken from the Iso2k database (Konecky
et al., 2020), which is a global synthesis of water isotope values measured in a variety of climate
archives covering the past two millennia. The ice core δ18O time series provided in this database
are dated to annual to centennial resolution. The speleothem records stored in Iso2k are a subset
of records provided by the SISAL database and are thus not considered.

For selecting ice core records, I chose the δ18O time series from the ‘glacier ice’ category which
are denoted as the primary local time series and given in h. Iso2k provides one single date for
the time stamps and does not provide measurement and dating uncertainties for the ice core
records. As for the speleothem data table, the ice core time series were saved in a joint data table.
The proxy record time series are stored in a simple time-site data table. Only records having
at least one sample measurement in the period from 1700 to 1800 CE are kept. Furthermore, I
require that the records have to span at least 300 years. Additional ice cores would be available
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from the end of the 18th century on, however for the annomaly reconstruction I chose to use
longer records that span the entire 18th century. Record number 22 from Spitzbergen is dropped
due to its extreme signal from -5 h to -25h over the last millennium. This selection results in
a final data table containing the time series for 109 sites. Metadata as the latitude, longitude,
elevation and name of each site were also stored.
The ice core record locations and their median time resolution are plotted in Figure 3.1. The
selection of ice core records is concentrated over Greenland and particular regions of Antarctica,
especially around the region of 0◦ longitude. Furthermore, one record from Alaska, four from
Nunavut (Canada) and three records from the Northeast Passage are available. Outside the
polar regions, three records from the Andes, one from Mount Kilimanjaro and six records
from central Asia and the Himalayas are part of the selection. A bar plot of the median time
resolutions and the availability of records per year are plotted in Figure 3.2. The number of
annualy available ice core records steadily increases from less than 20 in the first millennium to
more than 80 in the 19th century before dropping in the 20th century. Most ice core records
are of annual or (multi)-decadal resolution.



Chapter 4

Implementation of a Multi-Time
scale and Multi-Archive PaleoDA
framework

This chapter is dedicated to the concrete implementation of a PaleoDA framework which is
adjusted to the data used for this thesis. The overall structure of the code is sketched in Figure
4.1. The code consists of two streamlines, one for preprocessing the model data (1., yellow)
and one for preprocessing the proxy data (2., blue). Both are merged in the DA step (3.,
purple), which uses the Offline EnKF (see Section 2.6). In the first part of this chapter, proxy
system models for converting simulated δ18O into speleothem and ice core values, alternative
calibrations, and the setting of observation uncertainty are outlined and discussed. The second
part introduces the concept of Pseudoproxy Experiments. The third part is dedicated to possible
enhancements of the reconstruction, namely the technique of augmenting the state vector and
covariance localization and inflation. The fourth part presents how the PaleoDA algorithm is
extended to perform reconstructions on multiple time scales. Finally, the methodological choices
concerning the construction of the prior from one or multiple models, anomaly vs absolute value
reconstruction, and a Monte Carlo technique are introduced. The code is publicly available
in the repository github.com/mchoblet/paleoda, which also contains tutorials describing all
configuration options.

4.1 Proxy System Models for speleothems and ice cores

This section corresponds to box 1.1 in Figure 4.1.

The first step of any kind of PSM consists of selecting the geographically nearest value in a
simulated climate field with respect to the geographical location of a proxy. In the code, this
is implemented as either taking the value of the nearest grid cell or computed via an inverse
distance weighted mean using values and distances of the nearest four model grid cells.

The PSMs for speleothem and ice core δ18O mainly follow the steps as outlined in Dee et al.
(2015). The different steps of the PSMs are implemented in a way such that they can be turned
on and off separately.

In terms of the general PSM framework outlined in Section 4.1.1, the environment model is
performed already by the climate model, which simulates δ18O given the external conditions
as temperature, precipitation, pressure, and relative humidity (except for the height correction
and infiltration/precipitation weighting). The archive model consists of the speleothem cave/ice
core processes described in this section. An observation model would have to capture the dating
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2.1 Resample proxies to target resolution(s)

3. Data Assimilation loop 
 
 
 
 

0. Config  

 

4. Compute evaluation metrics and save

1.1 Proxy estimates from model (PSM)

1.0  Model data (prior) 

1.2  Generate pseudoproxies

1.3 Bring prior into vector form

2.0 Proxy data       and error

Algorithm sketch for Paleoclimate
Data Assimilation 

Figure 4.1: Algorithm sketch of the PaleoDA code. Dashed boxes indicate optional steps
depending on the configuration and the dashed arrow indicates the input of PSM-relevant
metadata. The numbers in the sketch are referred to in the text, although not all steps are
explicitly outlined. A more detailed version containing more substeps can be found in Figure
A.1.

and measurement uncertainties. This understanding of PSMs follows Dee et al. (2015), however
where the boundaries between the compartments are drawn is a matter of definition. For
instance, cave processes could also be attributed to the environment instead of the archive.

Dating uncertainty of the proxy records is not considered, because for the time period of the
last two millennia studied in this project, the dating uncertainties are assumed to be relatively
small. In addition, the multi-time scale DA approach outlined later will be less sensitive to
inexact dating.

4.1.1 Speleothem δ18O

For converting model δ18O into the δ18O signal recorded by calcite and aragonite speleothems
the PDB-conversion, infiltration, height, karst-filtering and fractionation are described. For
a comprehensive review of all processes affecting oxygen-isotope in speleothems see Lachniet
(2009). Note, that the approach described here is different from Comas-Bru et al. (2019) and
followed in Bühler et al. (2021), Bühler et al. (2022), and Ramos et al. (2022), where both model
and proxy values are converted. The Kalman filter formalism requires the observation operator
to capture all additional conversions of the prior values towards observation space.

PDB to SMOW conversion
Speleothem δ18O is usually given in the PDB standard, whereas simulated precipitation water
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is given in the SMOW standard. The conversion formula is found for instance in Coplen et al.
(1983).

δ18OPDB =
δ18OSMOW − 30.91h

1.03091
(4.1)

Infiltration/Precipitation weighting
For correctly representing δ18O prec on an annual scale we can not simply compute the yearly
mean δ18O from monthly values. The infiltration, denoted inf, which occurred each month
needs to be accounted for. Thus a yearly mean based on the monthly infiltration is computed.

δ18O′ =

∑
inf · δ18Op∑

inf
(4.2)

The infiltration is computed as the difference of precipitation and evaporation.

inf = precipitation− evaporation (4.3)

In the case the evaporation from a model is not available (see table 3.1), the evaporation is
approximated from the latent heat LH. The conversion equation states as follows (Allen et al.,
2022).

evaporation =
LH

2.45 MJ kg−1 (4.4)

Latent heat is given in units of MJ m−2 T−1. Infiltration, precipitation, and evaporation need
to be converted into a common unit for both to be comparable. I choose mm/month.
The calculation of weighted yearly mean in PaleoDA might be objected against because the
observation operator H is supposed to act on the same prior state vector as the one that is as-
similated. Here H acts on monthly values, although yearly means for instance for temperature,
which are not weighted, are assimilated. This is an approximation, which is useful to decrease
the influence of proxies which are biased towards specific months. An example are speleothem
records from the South American Monsoon Region, which grow mostly during December, Jan-
uary and February. For a regional climate reconstruction of that region, it can make sense to
explicitly assimilate seasonal climate means.

Height correction
The real topographical height at a cave location and the topographical height of the nearest
climate model grid cell might differ considerably. Due to the height effect on the isotopic
composition of precipitation, which is described by the isotopic lapse rate, the simulated δ18O
value is biased. This bias can be corrected via a simple linear relationship to the height difference
∆h and the isotopic lapse rate l which is usually given in h/100m.

δ18Oheight corrected = δ18O−∆h · l (4.5)

The lapse rate might vary considerably regionally and unfortunately, the literature on this
topic is sparse. Reasons for variability in the lapse rate might be local-scale climate, mountain
geometry, and morphology Brian and Fan (2012). Here we assume a lapse rate of −0.28h/100m
(Poage and Chamberlain, 2001). If temperature-dependent fractionation is to be considered,
an environmental lapse rate of −0.5K/100m is applied to the simulated temperature (Roedel
and Wagner, 2017).
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Karst Filter
The water which is infiltrating the soil above a cave does not drop into the cave directly as
it first needs to pass the karst system. The karst storage effect for so-called drip water is a
complex process, which can be simulated with an aquifer recharge model.
To that end, the incoming δ18O signal is convolved with a Green’s function g that depends on
the time t and the mean transit time τ which is characteristic for that aquifer. It has the effect
of a low pass filter which filters out short-term variability in the climate signal.

δ18Oafter karst filter = g(t) ∗ δ18O (4.6)

The Green’s function is defined as

g(t) =

{
1
τ e
−t/τ , t > 0

0, otherwise
(4.7)

The transit time can differ between different caves. For instance, Bunker cave in western
Germany the transit time was found to be 3.4 years (Kluge et al., 2010), whereas for Villars
cave in central France up to 11.1 years, depending on the location in the cave, were estimated
(Jean-Baptiste et al., 2019). Nonetheless, transit times are not available for most caves. Bühler
et al. (2022) have shown that 2.5 years can be used as a global value for the transit time.

Fractionation
Finally, the effect of isotopic fractionation between water and calcite/aragonite is simulated.
Equilibrium isotopic fractionation is defined by the the fractionation factor α, which is calculated
via the involved isotopic ratios δA/B for the involved phases.

αA−B =
1000 + δA
1000 + δB

(4.8)

⇒ αA−B · (1000 + δB)− 1000 = δA (4.9)

Fractionation is a temperature-dependent process which needs to be empirically quantified for
the type of karst mineralogies involved (Calcite and Aragonite). Many formulas have been
inferred from both lab-grown and real cave-speleothems. While labs can test a larger tempera-
ture range, they still pose an artificial environment. The differences between the fractionation
formulas, in comparison to the effect introduced by model biases in simulated δ18O, is small. A
comparison which formula suits the model and speleothem data best thus remains inconclusive.
I chose to use the formulas that are recommended by the SISAL working group in Comas-Bru
et al. (2019).
Fractionation factors are usually given in their logarithmic form. As the fractionation temper-
ature the simulated annual mean temperature nearest to the cave location is chosen. In the
PaleoDA code, optionally also the mean simulation temperature instead of the varying temper-
ature can be set, such that a model bias is corrected, but the covariance to other grid cells in
the Kalman gain is not affected.
For calcite I use the formula from Tremaine et al. (2011):

ln(α) =
16.10(103T−1)− 24.6

1000
, (4.10)

and for aragonite the formula from Grossman and Ku (1986) as reformulated in Lachniet (2015):

ln(α) =
18.34(103T−1)− 31.954

1000
. (4.11)
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For calcite, this results in the final fractionation formula

δ18Oafter fractionation = (δ18O + 1000) · exp(16.1/T − 24.6/1000)− 1000. (4.12)

This formula is structurally the same as used in Dee et al. (2015) and originally proposed in
Wackerbarth et al. (2012), with the difference that the PDB to SMOW standard conversion has
already been performed in the first step.

4.1.2 Ice core δ18O

As for the speleothem PSM I follow the PRYSM publication (Dee et al., 2015) for δ18O captured
by ice cores from climate model δ18O . PRYSM and its publicly available python package
summarize the extensive previous research that hat been undergone to understand the climate
signal captured by ice cores, especially with respect to the complex processes of firn diffusion
and ice core compaction. I only present the formulas for the main mechanisms. All equations
can be found in Section 3.1 of Dee et al. (2015). This PSM has been used in PaleoDA studies
as Steiger et al. (2017) and Zhu et al. (2020). Recently, a different PSM that also accounts for
precipitation intermittency during the year has been proposed by Casado et al. (2020).

Precipitation weighting
As for speleothems, δ18O prec can be computed as an annual mean by taking into account how
much water has precipitated in each month. In contrast to the cave locations, evaporation is
assumed to be small in comparison to precipitation and therefore not considered.

δ18O′ =

∑
prec · δ18Op∑

prec
(4.13)

Height correction
The same isotopic lapse rate as for speleothems is applied. This effect is more relevant for ice
cores than for speleothems, as more of them are found in extreme locations (for instance in the
Himalaya in Asia).

Compaction and Diffusion
The archive model of the ice core PSM consists of simulating the effects of compaction and
diffusion. Compaction is simulated using the mean annual temperature and snow accumulation
rate, based on the yearly precipitation. However, as stated by the PRYSM authors this effect
will be negligible for short time scales as the last centuries. A depth-age profile is established
by converting the initially even spacing in time of the original time series into depth spacing.
Diffusion affects how the external climate signal is transferred down an ice core, which is a
process that varies over depth according to local diffusivity. The diffused isotopic signal is
simulated as a convolution with a gaussian kernel G

δ18Odiff = G ∗ δ18O (4.14)

where the kernel with standard deviation/diffusion length σ is

G =

 1
σ
√

2π
e

−z2
2σ2 , t > 0

0, otherwise
(4.15)

The PRYSM authors propose not simplifying the calculation by assuming σ as constant but
computing it step-wise given the local diffusion length at each depth, which depends on tem-
perature and density. As this calculation also requires an estimate for the diffusivity of water
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vapour, ambient pressure is another required variable for the ice core PSM. As sea level pressure
is available only for two out of five simulations, and the effect of varying pressure is negligible
in the context of PaleoDA for the last millennium, I decided to use the fixed average sea level
pressure of 1013.25 millibars.

4.1.3 Pre-assessment of the speleothem and ice core PSM

Understanding the climate proxies that are to be assimilated is a crucial requisite for PaleoDA.
This means knowing how to relate a simulated climate signal to the one observed in a climate
archive. Many existing PaleoDA call for better PSMs to improve the reconstructions, because
often simple linear regressions as presented in the next chapter are used. In my project the
assimilated climate variable, δ18O , is already available in the simulations. In this section, I
discuss to what extent more comprehensive PSMs are meaningful when δ18O is already available.

In offline PaleoDA, the aim of the PSM is to be provided an ensemble range of simulated
values for each observation, which is characterised by its mean and standard deviation due to
the assumption of normality underlying the Kalman Filter. As the prior ensemble is static,
it is not important to match the true climate signal in time. PSM components as the karst
filter or firn diffusion are not affecting the mean value of this range of values, hence they
have no effect on the innovation part of the Kalman equations. Still, they are likely to act
as low-pass filters and suppress short-term variability and hence the standard deviation of the
range of values provided by the model simulation. This is relevant in the sense that it a)
reduces the prior standard deviation (uncertainty) provided by the model and b) might affect
the covariance relationship of the observation estimates to the other grid cells. Furthermore, an
infiltration/precipitation weighted yearly mean for δ18O will covary less with the regular annual
mean for temperature and precipitation. Hence the effect of a proxy in the DA is reduced. A
similar effect is expected when simulating karst fractionation, where the δ18O variable is mixed
with the time-varying annual mean temperature. However, this covariance decrease can be
avoided by using one constant mean annual temperature. The choice of PSM thus also affects
how much an observation influences the overall reconstruction. A lowered influence can be
considered more realistic, although then the reconstruction might rely strongly on the (static)
prior simulation. The question of how the reconstructions and underlying covariance patterns
are affected by PSM choices is not properly addressed in existing PaleoDA literature. Some
publications, as Dee et al. (2016) and Steiger et al. (2017) touch upon the issue by plotting how
the mean covariance-distance relationship is changed for different PSMs.

A way to avoid this issue at first is to assimilate proxy record and model anomalies and not use
PSM parts that alter the covariance structure. This will be discussed in Section 4.8, where the
concept of assimilating anomalies instead of mean values is presented.

4.1.4 Calibration via linear regressions (Statistical PSM)

An alternative to the physics based PSM described in the previous sections is the so called
statistical PSM. It can be applied to all types of different climate archives and can thus be
considered an all-purpose weapon. In my project, it was also considered to use it, but rejected
due to the considerations that are outlined in this section. The idea is to calibrate the proxy
records to an instrumental dataset via a linear regression, most often performed with tempera-
ture over the 20th century. This approach has been performed used in the LMR (Hakim et al.,
2016; Tardif et al., 2019) and in PHYDA (Steiger et al., 2018) which are mainly based on tree
ring proxy records. In a first step, each proxy record pi is regressed on the nearest available in-
strumentally measured variables Xi (e.g. temperature). An often used calibration temperature
dataset is the Berkeley Earth observational temperature dataset (Rohde and Hausfather, 2020).
Proxy records and instrumental data are converted into anomalies with respect to a shared time
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period.

pi = αi + βiXi + εi (4.16)

αi and βi are the resulting regression parameters and ε is the residual. The regression parameters
from the calibration period can then be used for the statistical PSM on other time periods, where
the same linear relationship is assumed to hold: H(Xf

i ) = αi+βiX
f
i . The square of the residual

is taken as the proxy error: Ri = ε2i .

For the data of this project, only ice cores qualify for the statistical PSM. Speleothem growth
is irregular and for the relatively short instrumental period not enough data points would be
available to compute a meaningful linear regression.

In the PaleoDA instrumental period reconstruction by Steiger et al. (2017), the authors com-
pared the assimilation of ice core δ18O via the PRYSM ice core PSM described in Section 4.1.2
and the statistical PSM which uses the simulated temperature instead of δ18O . In spite of this
“variable detour”, they found the statistical PSM to be better suited according to global error
metrics. However, I do not think this conclusion is useful for this thesis for three reasons.

• In the instrumental Berkeley Earth dataset, temperatures at the poles are only present
from the year 1956 A.D on. The linear calibration is based on few values.

• Linear regression over that short time period is difficult due to non-climatic noise present
in the records, which leads to small regression slopes.

• The regional mean temperature reconstructions in Steiger et al. (2017) seem to be almost
not affected by the proxy records (compare Figure 12 and 14 of the publication).

To demonstrate the implications of the statistical PSM, in Figure 4.2 the regression slopes,
residuals, and resulting Kalman gains are shown. Most ice cores have regression slopes close to
zero and far below the spatial slope empirically found for specific regions, as 0.67± 0.02h◦C−1

for Greenland (Johnsen et al., 1989). However, in the Kalman Filter the regression slope is not
used directly, but weighted relatively to the observation error variance. A large regression slope
a only leads to a large Kalman Gain if the residual ε is small:

K =
cov(Xf ,H(Xf ))

cov(H(Xf ),H(Xf )) +R
=

a · cov(Tf ,Tf )

a2 · cov(Tf
i ,T

f
i ) + ε2i

(4.17)

Conversely, also small regression slopes can lead to large Kalman gains. Both effects can be
seen in the right panel of Figure 4.2.

Although the trend of larger Kalman gains for proxy records with larger slopes is recognisable,
also proxy records with regression slopes close to zero have large Kalman gains and thus influence
the reconstruction more than other proxy records. The resulting Kalman gains go up to four,
meaning that a positive δ18O anomaly of one in an ice core proxy record is converted to a local
4K temperature increase in the DA. Some records even have negative regression slopes and thus
negative local Kalman gains, which is physically unplausible. Due to this inconclusive situation,
I chose not to use the statistical PSM for ice cores. The statistical PSM might become a viable
option when at a later stage climate archives with a more conclusive correlation to instrumental
temperature data are incorporated.

4.2 Observation error variance

This section corresponds to box 2.0 in Figure 4.1.
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Figure 4.2: In the left panel the regression slopes for the Iso2k ice cores from different regions
with the Berkeley Earth dataset is shown. The central panel shows the corresponding residuals.
The resulting Kalman gain in case of an annual temperature variance of 1.5K2 is shown as a
function of regression slope and error.

In DA, one central number is the uncertainty estimate associated with an observation. In
the Kalman Filter, the uncertainty covariance matrix R serves for weighting the covariance
between the prior field and the observation estimates. In PaleoDA the proxy uncertainties have
been defined in different ways. Studies using the statistical PSM, e.g. Steiger et al. (2018)
and Tardif et al. (2019) assume the regression residual to capture all uncertainties, whereas
in studies based on absolute values, e.g. Steiger et al. (2017) the instrumental measurement
uncertainty was defined equally for all records. Okazaki and Yoshimura (2017) and Shoji et al.
(2022) chose a proxy error which corresponds to a fixed signal-to-noise variance (see the next
section 4.3). In tree ring based reconstructions for the second half of the last millennium Franke
et al. (2017), Franke et al. (2020), and Valler et al. (2019) introduce a spatial representativeness
error which takes into account that the natural variability in the area of a model grid cell.
This idea has also been used in a reconstruction for the deglaciation over Greenland (Badgeley
et al., 2020). Adding more errors automatically decreases the influence of climate proxies on
the reconstruction.
The LGM reconstruction by Tierney et al. (2020) and LGM to Holocene reconstruction by Os-
man et al. (2021) found that the proxy uncertainties provided by the employed marine sediment
PSMs were too large. The authors then resorted to dividing the proxy errors by a post-hoc
factor, which they determined via the calibration to proxy data that was not included in the
DA, to give more weight to the proxies.
These different examples show, that the observation uncertainty R is a rather unconstrained
value in PaleoDA. The PaleoDA code allows setting different proxy errors and testing the
sensitivity of the reconstruction to these values. The ambiguity of choosing the right proxy
record error gets more complicated when expanding the method to multiple time steps. Should
other proxy record uncertainties be chosen when the records represents a multi-year average
instead of an annual average?
The observation error is related to the fundamental topic of estimating how much signal-to-
noise is contained in a proxy signal, an area of active research which is also relevant for the next
section 4.3 about pseudoproxy experiments.

4.3 Pseudoproxy experiments

This section corresponds to box 1.2 in Figure 4.1.

A useful tool for testing the theoretical performance of a PaleoDA reconstruction prior to
using real data are so-called Pseudoproxy Experiments (PPE). The concept, which was initially
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proposed in Mann and Rutherford (2002) and comprehensively reviewed in Smerdon (2012)
consists of creating artificial observational data with noise from climate model simulations for
specific locations. PPEs enable exploring the effects of uncertainties and spatial and temporal
sampling of a proxy network on CFRs.

In PPEs, the true state from which the observations and the prior are sampled is known.
The conditions of PPEs can be considered optimal, because the distribution from which the
measurements and the prior are sampled is the same. The assumption of unbiasedness of the
mean values and the covariance patterns holds. Thus, the reconstruction skill can be quantified
with respect to the true state with common error metrics (Section 4.3.1). They are also useful
when the model from which pseudoproxy records are generated from is different to the one that
is used as a prior. This setup enables studying the effect of model biases, both in the mean
state and the covariance pattern.

The proxy record time series after adding noise are characterized by their signal-to-noise ratio
(SNR). The SNR is defined as the ratio of standard deviations of the true time series T and
the noise time series N (Smerdon, 2012).

SNR =

√
var(T)

var(N)
(4.18)

In the case of uncorrelated noise and signal, the SNR is related to the correlation r between the
noise time series T + N through the following equation.

SNR =
r√

1− r2
(4.19)

Most PaleoDA studies using pseudoproxies add white noise, which is also the standard assumed
in my experiments. Although this is the standard procedure in PaleoDA, real proxies are
considered to have more complex noise structures that change the spectral characteristics of the
proxy signal. An alternative would be assuming red noise as also performed in Steiger et al.
(2014). However, in offline DA the state estimates and errors are not influenced by each other,
such that I chose to only test white noise.

For performing PPEs the SNR value for proxy records needs to be fixed, such that a random
noise time series fulfilling equation 4.18 can be generated. The variance of the noise then
corresponds to the proxy record error. The SNR contained in different types of climate archives
is an area of active research. Many PaleoDA studies performing PPEs refer to Wang et al. (2014)
for setting an SNR of 0.45 as a realistic value, although this study mostly studied tree rings which
are calibrated on instrumental data. Rehfeld et al. (2018) and Reschke et al. (2019) studied the
signal content of temperature proxy records on millennial time scales resulting in SNRs ranging
from 0.05 to 0.5. In a recent model-data comparison for speleothems in the Amazon region over
the last millennium, Orrison et al. (2022) found that an SNR of 0.5 underestimates the signal
content of speleothems.

4.3.1 Evaluation metrics for pseudoproxy experiments

In the following, evaluation metrics commonly used for evaluating reconstructed time series x̂i
consisting of i ε [1, . . . n] data points are defined. The metrics can be applied for PPEs, where the
true target timeseries xi is precisely known. They can either be computed for each grid cell and
then be plotted as maps, or be averaged globally to summarize the skill of a reconstruction to
one single value. A more comprehensive discussion of these metrics can be found in Cook et al.
(1994). Except for the correlation no significance testing can be performed. In the following
temporal means are denoted by overbars.
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Pearson correlation (Corr)
The correlation captures how well the reconstructed and true signal covary. The covariance is
weighted by the variances of the two individual signals.

Corr =

∑n
i=1[(x̂i − x̂)(xi − x)]2∑n

i=1(x̂i − x̂)2
∑n

i=1(xi − x)2
(4.20)

The correlation spans the values -1 to 1. It effectively measures the phase coincidence of
reconstructed and true time series which is better for values close to 1. It is not affected by
biases in the mean value. Sometimes the correlation is also given in terms of its squared value
r2 which then spans from 0 to 1.

Root mean square error (RMSE)
The root mean square value computes the mean squared error between true and reconstructed
time series and it thus defined as

RMSE =

√∑n
i=1(x̂i − xi)2

n
. (4.21)

The RMSE can take values from 0 to ∞. Low values indicate better reconstruction skill.
The RMSE is a very common tool in climate model evaluation. Another closely related error
function is the mean absolute error, which calculates the mean of the absolute difference between
reconstruction and truth.

Coefficient of efficiency (CE)
The CE is a metric which derives from the RMSE, but also takes into account the variance of
the true time series. It is defined as

CE = 1−
∑n

i=1(x̂i − xi)2∑n
i=1(xi − x)2

(4.22)

The coefficient of efficiency takes values from −∞ to 1. Values larger than zero are interpreted
as skill, because then the RMSE is truly small in comparison to the variance of the true signal.
The CE value thus rewards a closer phase, amplitude and mean value in the reconstruction.

Reduction of error (RE)
A metric similar to the CE is the reduction of error. It aims to describe if a reconstruction is
better than the mean climatology provided by the prior xp.

RE = 1−
∑n

i=1(x̂i − xi)2∑n
i=1(xi − xp)2

(4.23)

Like the CE, the RE can take values from −∞ to 1. The reconstruction is better than the
uninformed mean climatology if the RE is larger than zero. Note, that if the prior and the
truth are generated from the same climate model, RE and CE are equal. This score is relevant
when using a different climate model as data assimilation targets and priors.

4.4 Enhancements for the PaleoDA reconstruction

The steps explained are performed on the prior state vector, and thus correspond to box 1.3 in
Figure 4.1.
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4.4.1 Augmenting the state vector

The iterative application of the Kalman Filter requires applying the observation operator H at
every time step. In the offline approach, the renewed application of the observation operator
is not necessary, because the ensemble of prior observation estimates is calculated once in the
beginning and reused at each time step. However, this is not the case for the multi-time scale
approach described in Section 4.5. To avoid a renewed application of the observation operator,
the observation estimates are appended to the state vector. This is called augmenting the state
vector in DA. As is shown below, this approach is mathematically valid for linear observation
operators. The augmented state vector technique can be used when the aim is to reconstruct
only the global mean temperature. An estimate of global mean temperatures can be assimilated
directly instead of assimilating full climate fields. The decreased state vector size results in less
costly computations1. Note the two following caveats. Primarily, the assimilated global mean
value and the mean from the assimilated field will be different if covariance localization (see Sec-
tion 4.4.2), is applied. Second, the observation operator as applied in Ensemble Kalman Filters
is often not linear, and hence using the assimilated observation estimates is an approximation.

Theorem 3. Assimilating a value that can be computed via a linear operator A from the
prior state vector Xf is equivalent to computing this value from the assimilated, posterior state
vector X.

Proof
A is applied to the assimilated state vector obtained via the Ensemble Kalman filter equation.
The crux is using the linearity of the covariance and A operator.

AX = A(Xf + K(y −HXf ) (4.24)

= AXf + Acov(Xf ,HXf )

[
HX′

f
(HX′

f
)T

Ne − 1
+ R

]−1

(y −HXf ) (4.25)

= AXf + cov(AXf ,HXf )

[
HX′

f
(HX′

f
)T

Ne − 1
+ R

]−1

(y −HXf ) (4.26)

This last equation is equal to the case, in which A is applied to the state vector before the
assimilation, the observation estimates are unaffected by A because AHXf = HXf 2.
Exactly the same holds for the perturbation Kalman gain from equation 2.51, and for the
posterior error covariance 2.17 because of the linearity of the covariance.

Corollary
Directly assimilating the global mean value (for instance of temperature) is equivalent to as-
similating the whole climate field and then computing the global mean.

Proof Assume the gridded climate field T is described by a matrix Tij . The index i denotes
the central latitude and the index j the central longitude of each grid box.
The global mean GM for this field can be calculated by taking into account the latitudinal
average weights wi and the total number of grid cells.

GM(T) =
1

Nlats ·Nlons

Nlats∑
i

wi

Nlons∑
j

Tij (4.27)

1The prior observation estimates still need to be assimilated for the innovation part of the Kalman Filter
equation.

2Strictly speaking, the state vectors in both approaches are not equal because in one case the state vector is
the augmented state vector. This is only a notational formality omitted here for the sake of brevity.
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The summation is a linear operator, thus calculating the global mean is also a linear operation
and theorem 3 applies. It becomes even clearer if the climate field is flattened and written as a
simple vector with Nlats ·Nlons entries. Then, the global mean can be written as a vector A of
shape 1 · (Nlats ·Nlons) where each entry is equal to the appropriate latitudinal weight divided
by the total number of grid boxes.

4.4.2 Covariance localization

A popular technique to enhance the Ensemble Kalman Filter is covariance localization. It
can be used as an option in the PaleoDA code developed for this thesis. Covariance localiza-
tion addresses the issue of spurious covariances provided by the prior, which are long-ranging
correlations between the prior field and the observation locations. If they are considered to
be erroneous, they should not influence the reconstruction. The covariance matrix Pf in the
EnKF is multiplied by a localization matrix L which takes into account the geographical dis-
tance between locations on earth. L has the purpose of dampening long-ranging correlations.
For creating the localization matrix, typically a Gaspari-Cohn decorrelation function of fifth
order is used (Gaspari and Cohn, 1999) (p.748). It has a cut-off radius after which the function
is set to zero and is isotropic, meaning that correlations are treated equally in all directions.
The multiplication of Pf and L is performed element-wise (a Hadamard/Schur product), which
is denoted by a ◦ in the Kalman gain formulation.

K = L ◦PfHT (H(L ◦ Pf )HT + R)−1 (4.28)

Application in different EnKFs
Most EnKF variants never calculate the explicit prior covariance matrix for efficiency reasons,
which is a problem for the application of covariance localization. It can be used directly in the
EnSRF with serial observation treatment (Whitaker and Hamill, 2002) and has been used this
way in various PaleoDA studies, e.g.Hakim et al. (2016) and Tardif et al. (2019). As shown
in Section 2.5 this method is orders of magnitude slower than assimilating all observations at
once. The serial EnSRF is prone to instabilities when combined with covariance localization
(Nerger, 2015). Tierney et al. (2020) optimized the implementation of covariance localization
by using the EnSRF (PaleoDA version) (see Section 2.4.3) in combination with two separate
localisation matrices, one for PfHT and one for the observation estimates in HPfHT . This type
of covariance localization is the method implemented for this thesis, which is slower than the
unlocalized EnKFs because of additional calculations of the Hadamard product3. Another way
to use covariance localization is to employ the stochastic EnKF with perturbed observations
(Section 2.4.1), where Pf appears in the equations. The ETKF and ESTKF can not be localized
directly. Ott et al. (2004) developed an alternative implementation with serial observation
treatment which allows for localization. See Okazaki et al. (2021) for an application of the
localized ETKF in PaleoDA.

Localization radius
The central parameter of the Gaspari-Cohn decorrelation function is the localisation radius, after
which the covariance is set to zero. This radius is an arbitrary value which requires empirical
justification. It can be set in the PaleoDA code configuration of this thesis. PaleoDA studies
defined a localization radius via the comparison of reconstructions with varying localization
radii to instrumental data (Tardif et al., 2019) or external proxy data (Osman et al., 2021;
Tierney et al., 2020). They found very large radii between 12,000 and 25,000 km to be optimal.
Valler et al. (2019) hypothesised that zonal atmosphere correlation lengths should be larger

3In combination with the regular matrix product, the Hadamard product is not associative and commutative.
In the context of localization in the Ensemble Kalman Filter this has been studied by Petrie (2008), where the
approximation of associativity and commutativity, which would improve efficiency, has proven to be inadequate.
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than meridional ones and applied a non-isotropical decorrelation function with two different
radii, but did not find improvements.

Arguments against covariance localization
The authors of PHYDA argue against using covariance localization, because of little gains,
additional justification needed for the localisation radius and the fact that in offline DA ensemble
sizes can be selected large enough to avoid spurious correlations4. In Parsons et al. (2021)
different localization radii have been tested for PPEs with different climate models and it was
found that the reconstruction skill is best for either a very long localization radius or not using
localization at all. They found the use of multi-model-ensembles (see Section 4.7) to be a more
robust way to limit teleconnections.

4.4.3 Covariance inflation

Another method used to enhance DA is covariance inflation (Vetra-Carvalho et al., 2018).
In numerical weather prediction, it is common that the prior ensemble has too little prior
uncertainty due to the posterior uncertainty being reduced in each DA step, especially for small
ensemble sizes. As a consequence, new observations do not influence the estimate any longer.
Covariance inflation circumvents this problem by inflating the prior covariance (uncertainty) of
the ensemble members, for instance via a multiplicative factor m for each ensemble member Xi:
Xi = m(Xi −X) + X. This results in an inflated posterior uncertainty, such that observations
can again influence the estimates. For the offline DA approach, where the prior estimate is not
cycled in time and the same prior is used in each time step, this approach is not meaningful.
To the best of my knowledge, it has not been applied in PaleoDA.

4.5 Multi-time scale PaleoDA

This section is related to box 2.1, 1.3 and 3 in Figure 4.1.

The basic PaleoDA algorithm assimilates proxy record data at a fixed time step. The aim
of my thesis is to incorporate speleothem and ice core climate archives. Chiefly in the case
of speleothems, these types of archives do not provide annual means, but a filtered signal that
captures the mean climate conditions over a multitude of years. For speleothems from SISALv2,
most chronologies have median time resolutions of multiple years. Apart from annual ice cores,
Iso2k also contains decadally and centennially dated ice core records. (see Figure 3.2). It is
not adequate to treat this kind of proxy record data as annual means as the usual PaleoDA
algorithm assumes. A simple approach to circumvent this problem consists of binning the
data for multiple years, and reconstructing the climate with the resolution of these bins. This
approach has been used in the LGM to Holocene reconstructions by Osman et al. (2021), where
a 200 year binning has been chosen due to the low resolution of the marine sediment proxies
they assimilated. For the last millennium, both high- and low-resolution proxy records are
available. However, the LMR and PHYDA rely solely on annual proxies. The annual PaleoDA
algorithm of these projects also have the characteristic of producing reconstructions with low
multidecadal and centennial variability in comparison to other CFR techniques (Neukom et al.,
2019a) (see Figure 1 of that publication). The shortcomings of the annual algorithm have been
acknowledged by Steiger and Hakim (2016). Steiger and Hakim proposed an extension of the
algorithm to enable multi-time scale reconstructions. In the following, I present and discuss
this approach, named SH-2016, and a recent adaptation in Erb et al. (2022), named Erb-2022,
before describing the adaptation I have implemented for this thesis in the next section.

4Originally, covariance localization was designed for numerical weather prediction, where the DA is performed
online with a small number of ensemble members (≈ 10)
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Figure 4.3: Illustration of how the previously assumed prior state estimation vector, consisting
of a random collection of climate fields, is extended into a matrix form which also contains the
subsequent years. Each Xi corresponds to the mean climate field of one simulation year, the
index denotes the year of the simulation. The Xi could also be depicted explicitly as a vector,
thus rendering the matrix three-dimensional. In the multi-time scale DA, rows of the matrix
are averaged over several years in order to assimilate multiyear means.

4.5.1 The SH-2016 multi-time scale DA algorithm

The essence lies in extending the annual prior state vector, which in Offline DA consists of a
random selection of simulation years to a prior state matrix, in which also the subsequent years
to these climate states are stored. This idea is depicted in Figure 4.3. With that prior matrix,
multi-year means can be assimilated instead of only annual means. SH-2016 propose that each
proxy record can be assimilated at its own temporal resolution. Thus, the proxy records only
add information on appropriate time-scales to the reconstruction. The key assumption is that
a low-resolution proxy record represents the climate state mean over n years centred on its
dating points. The concept of serial proxy assimilation, presented in Section 2.3 is used. Each
proxy record is assimilated one after another, updating the n-year mean which is calculated
from the rows of the prior matrix. This also requires calculating prior observation estimates
H(X) averaged over these years. After the assimilation of each n-year mean, the anomalies
from this mean are added back. The algorithm also offers the advantage, that the covariances
in the Kalman gains are computed from the multi-year averages instead of the annual means,
thus being time scale appropriate. Depending on the climate model simulation, the covariance
structure can be different on longer time scales. SH-2016 found an improved representation of
longer-than-annual variability in the reconstruction for PPEs.

Limitations
The main problem of SH-2016 is the slowness of the algorithm. Serial proxy assimilation,
paired with repeated mean-anomaly decompositions of the prior matrix is very slow. To reduce
the computational cost SH-2016 only demonstrated their algorithm with pseudoproxies for the
global mean temperature and the AMOC index. Furthermore, the size of the prior state matrix
is limited with respect to the number of consecutive years it can contain (length in x-direction).
For each proxy to be assimilated freely at its respective time scale, the matrix would need
to have as many columns as there are years to reconstruct. However, when only one single
simulation is used for the prior, this reduces the number of rows and thus the ensemble size to
one. Therefore, a block size which defines the largest time scale that can be assimilated in the
reconstruction is set. This then causes the problem of discontinuities at the block edges, for
instance when the prior matrix has block size 50 but a decadal proxy record dated at year 49
of this block is assimilated. As suggested by the authors, a solution consists in using multiple
climate simulations as a prior, such that each row of the prior matrix is given by one model.
This would bring the approach closer to the concept of transient offline DA, however, the five
climate model simulations available in my project are not sufficient to provide representative
covariances.
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Adapted implementation in Erb-2022
The idea of SH-2016 was used in this recent reconstruction of the last 12,000 years. To improve
speed and reduce memory consumption, instead of a prior matrix a transient prior vector
consisting of consecutive years is constructed (see Section 2.6.4). The smallest time scale is
decadal and proxy records are assimilated at once instead of serially. Due to the way the prior
is constructed, the covariances in the Kalman gain are computed from multi-decadal observation
estimates (from the running mean over the prior vector) and the decadal prior ensemble. This is
the main difference to SH-2016, where the time scale of observation estimates and prior members
in the covariance is the same. I do not use this approach because using a transient prior is not
necessary for the last millennium and using same time scale covariances is more natural.

5 year spaced proxy

1 20

20

10 10

5 5 5 5

20 consecutive years in prior block

11 1 1

10 year spaced proxy

Figure 4.4: Illustration of assigning proxy records records which represent 5 and 10 years to
time scale blocks inside a 20-year block. The (sub)blocks are represented by horizontal arrows.
Observational data from climate archives is usually not spaced evenly in time as shown here.

4.5.2 Adapted implementation of the SH 2016-Algorithm

My main idea is to assimilate proxies not serially, but in subblocks for each time scale. The
algorithm goes through the entire time period block and subblockwise. Hence, the time scales
that are to be reconstructed need to be fixed beforehand. This will allow the algorithm to be
orders of magnitude faster. These subblocks can be all time scales that fit into the largest time
scales (e.g. 1,5 and 10 years if the largest time scale is 20 years). The largest time scale is called
block size bs. However, it would be a coarse approach to automatically assign proxy records
to these blocks by simple binning. Furthermore, there is the border discontinuity problem due
to how the prior matrix is constructed. It is necessary to define a resampling procedure to
preprocess the proxies and assign the observations to the subblocks. The situation is visualized
in Figure 4.4.

Resampling scheme for the proxies

This section corresponds to box 2.1 in Figure 4.1.

I use a resampling route that consists of five steps. Steps 2 to 4 are inspired by the MakeEquidis-
tant function of the Paleospec R package (github.com/EarthSystemDiagnostics/paleospec).

1. Estimating the resolution of a proxy record

2. Upsampling proxy record to annual resolution

3. Filtering against aliasing

https://github.com/EarthSystemDiagnostics/paleospec
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4. Downsampling to target resolution

5. Masking gaps in the resampled time series

Estimating the resolution of a proxy record
It is necessary to set a resolution for each proxy record. However, for ice core and speleothem
climate archives it is not directly clear which time scale is precisely captured due to filtering
processes, also without consideration of dating uncertainties. It is often not known to researchers
doing model-data comparison, if a proxy record with a dating represents a time average or a
snapshot and what the effective temporal resolution of a proxy record is (Brierley and Rehfeld,
2014). To estimate an individual resolution for each record I resort to the median resolution of
each proxy record time series. The median resolutions of all speleothem and ice core records
are plotted in Figure 3.2. In the adapted SH-2016 algorithm, the time scales are fixed in the
beginning, such that the median proxy record resolution has to be rounded to the nearest time
scale in the set of predefined time scales. In the following, that individual proxy record resolution
is called the target resolution. The PaleoDA code also allows reusing records on all time scales
larger and equal to the target resolution (option: reuse). For example, if the predefined time
scales are 1,5,10, and 20 years, a proxy record with target resolution 5 years is also resampled
to its 10 and 20-year averages and used on these time scales.

Upsampling proxy records to annual resolution
The proxy record time series is resampled to annual resolution. This step is performed with
the .resample.interpolate method from the Python package xarray. For the interpolation
of non-present data points, the PaleoDA code can use nearest neighbour or linear interpolation.
The former has the advantage of conserving the multi-year mean.

Filtering against aliasing
To safeguard the resampled time series against aliasing effects from frequencies higher than the
desired target resolution, the upsampled signal is filtered with a Butterworth filter. The cut-
off frequency is defined by the target resolution. The signal.butter and signal.filtfilt

methods from the scipy-package are used to ensure that the resulting signal is not shifted in
phase.

Downsampling to target resolution
The upsampled and filtered time series is resampled to the target resolution by computing the
target resolution mean. The resampled time series are labelled with the leftmost entries of each
interval.

Masking gaps in the resampled time series
The resampling procedure might introduce artificial data where the original proxy record time
series has a large gap without available data. This can be the case for the speleothems which
have decadal to centennial growth hiatuses. Therefore in the last step, the resampling algorithm
goes through the original time series and detects gaps which are larger than x times the target
resolution. These gaps are then masked with NANs in the resampled time series. The gap
factor x can be set in the PaleoDA configuration.

4.6 Preparation of the prior state matrix

Given the number of desired ensemble members Ne and the largest time scale bs, the prior
matrix is created from randomly selected simulation years and their bs(block size) subsequent
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years. The prior matrix is augmented with the observation estimates HX. For the multi-time
scale assimilation it is crucial that the observation estimates are also updated.

4.6.1 Assimilating the resampled proxies over multiple time scales

To assimilate the proxy records over multiple time scales, the entire time series, e.g. the last
millennium is decomposed into blocks of bs consecutive years. The algorithm loops over these
blocks. For each block, the prior state matrix is decomposed into one bs-year mean and bs
anomalies. The algorithm looks up the proxy record values with resolution bs for the current
timestamp and updates the bs-year mean of the prior matrix. Then the algorithm goes down to
finer resolutions. For the subblocks, the subblock means are assimilated until finally the annual
proxies are treated. The algorithm goes from the largest to the smallest time scale. SH-2016
tested their algorithm also for the other direction, going from small to large resolutions, and
found statistically identical results. A visualization of the multi-time scale DA loop can be
found in the full algorithm sketch in Figure A.1.

4.6.2 Advantages and limitations of the adapted multi-time scale PaleoDA
algorithm

In comparison to SH-2016, resampling the proxy records drastically reduces the number of
calculations, especially the anomaly-mean decompositions of the prior matrix, which constitute
a costly operation. Although this way the algorithm’s speed is close to the annual version,
the absolute flexibility with regard to reconstructing all possible proxy time scales has been
lost. However, a set of resolutions adapted to most proxy record resolutions can be chosen.
The multi-time scale approach could also be used to deal with the chronological uncertainties
of proxy records. It remains to be tested if the multi-time scale algorithm also improves the
temporal variability of reconstructions as shown by SH-2016, or if the principle advantage lies
in the ability to assimilate proxy records which are not annually resolved. The option to reuse
proxies on multiple time scales can be used to give more weight to the proxy records. The
adapted SH-2016 algorithm contains even more different tuning configurations than before.
These configurations need to be justified and the sensitivities to these choices tested.

4.7 Single and multi-model prior ensembles

This section is related to box 1.0 and 1.3 in Figure 4.1.

Single-model ensembles
In Section 3.1, the five different isotope-enabled model simulations that are available for this
study were presented. The natural approach is to create a separate prior from each of them and
then compare the influence of the prior in the different reconstructions. The code proceeds by
loading all variables which are to be assimilated from a simulation and computing the annual
mean from the monthly values. The code also offers the option to compute seasonal means for
specific months instead of annual months in order to study the influence of seasonal biases in
reconstructions, see for instance Erb et al. (2022), Steiger et al. (2018), Tardif et al. (2019),

and Zhu et al. (2020). The proxy estimates (HXf ) are calculated with the configured PSM
options. From these annual means, the prior ensemble is created by selecting randomly Ne years
(sampling without replacement). Usually, Ne is chosen to be 100 for millennial simulations
as a good trade-off between capturing the model covariance structure and not making the
computation too costly.
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Multi-model ensembles
The multi-model ensemble (MME) approach consists of combining prior ensemble members from
different climate simulations. Such an MME reconstruction is different from taking the mean
from multiple reconstructions with different single-model priors5. MMEs have been explored in
a recent study working with pseudoproxies (Parsons et al., 2021) and applied to real data in the
LGM surface temperature reconstruction (Annan et al., 2022). Parsons et al. (2021) found that
MMEs have better reconstruction skill than single-model ensembles. The central motivation
of using an MME is twofold. First, the range of covered values by an MME, and thus the
uncertainty of the reconstruction is larger and possibly more realistic, especially when working
in absolute space (see Section 4.8). last millennium simulations are tuned towards stability, the
range of simulated values provided by a single-model is small. However, models can differ quite
substantially in their simulated regional δ18O values (Bühler et al., 2022), such that combining
them provides a larger range of values. Second, the MME provides a more diverse covariance
structure with more spatial degrees of freedom. Teleconnections in the covariance pattern will
be weighted according to their shared prevalence in all climate models. To create an MME
ensemble, the single-model approach described above is adapted.

1. In a preprocessing step the climate model simulations are regridded to a common grid,
for instance with the Python xESMF-package. I regridded the models to both the lowest
and highest resolution of the available models.

2. The data is loaded and averaged for each model separately as described above.

3. If the anomaly option in the PaleoDA code is set, the model data is debiased by subtracting
the mean over a specific period.

4. The priors matrices for each model are concatenated into one MME.

4.8 Assimilation of anomalies vs absolute values

This section is related to the boxes 1.1, 1.3, and 2.0 in Figure 4.1.

In PaleoDA, either absolute values or anomalies can be assimilated. Both options are con-
figurable in the PaleoDA code. Assimilating anomalies is a convenient way to avoid model
biases and use models only as covariance structure providers. Nonetheless, this requires that
the proxies are debiased over a time period shared by all proxies, which reduces the number of
proxies that can be used in the reconstruction. The covariance structure provided by the model
prior and the prior observation estimates is not affected by subtracting means from both values
due to the definition of the covariance. However, the innovation part of the Kalman Filter is
different.
In the anomaly approach, the mean observation estimate from the static prior will be close to
zero (or can actively be enforced to be zero6), such that the innovation consists solely of the cli-
mate signal provided by the proxy. In the absolute value approach, the mean value as simulated
by the model is still important. Large model-proxy differences can have a strong effect on the
reconstruction, especially when a bias is only present in one variable as δ18O , but not tempera-
ture and precipitation. Most reconstructions, including LMR (Hakim et al., 2016) and PHYDA
(Steiger et al., 2018) assimilate anomalies because the employed statistical PSM is calibrated
on instrumental temperature anomalies. Few PaleoDA studies have assimilated absolute values.
For instance, the LGM reanalysis Tierney et al. (2020) consists of one single assimilation step,

5The MME approach is also different from the transient offline assimilation approach described previously,
because the prior is not changing through time.

6As the prior consists of Ne randomly selected simulations years, the mean of this random selection will not
be exactly zero. The ensemble is thus zero-centered again.
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and thus anomaly assimilation is not possible. The deglaciation reconstruction by Osman et al.
(2021) also works with absolute values. In the last millennium reconstruction by Shoji et al.
(2022), which uses isotope-enabled GCMs, the authors argue against assimilating anomalies be-
cause their PSMs required absolute values, which is also the case for the speleothem and ice core
PSM in this thesis. Although methodologically inconsistent with the observation operator H, it
is also conceivable to simply subtract the mean after applying the PSM to the absolute values
and finally perform anomaly assimilation. This way, the PSM-modified covariance structure is
used. Therefore in the PaleoDA code, if the anomaly assimilation option is set, the anomalies
are computed after applying the PSM.

4.9 Monte Carlo Scheme for the PaleoDA algorithm

In the LMR (Hakim et al., 2016), a Monte Carlo scheme is used to account for uncertainty in
the proxies and priors. The method consists of repeating the reconstruction a specific number
of times with a different random selection of Ny ensemble members and only a fraction of the
proxies, e.g. 75%. The remaining, not assimilated proxies can be used for validation. A Monte
Carlo procedure is also implemented as an option in the PaleoDA package, where a fraction (or
a desired absolute number) is applied to the number of proxies available at each reconstructed
time scale. However, in the experiments performed for this thesis, the proxy record fraction
option will not be used due to the small number of available proxy records. Only the prior will
be resampled, as this proved to improve the evaluation metrics for PPEs.



Chapter 5

Validation of the PaleoDA
framework

In this chapter, the PaleoDA framework presented in Section 4 is validated such that it can be
applied meaningfully to the proxy record data in the next chapter. First, I perform a model
data comparison to detect model-data differences. Then, I investigate the influence of the prior
model in form of the averaging kernel. and perform pseudoproxy experiments with different PSM
settings to estimate possible reconstruction skill. I expand on pseudoproxy experiments using
different models as a target (for the pseudoproxies) and a prior to investigate the effect of model
biases in the covariance structure. Furthermore, multi-model ensembles are tested as priors.
Finally, I evaluate the temporal variability of multi-time scale pseudoproxy reconstructions.

5.1 Model-data median comparison

A basic assumption of the Kalman Filter is that the prior state estimate is unbiased. Biases
affect the CFRs in two ways, in the mean state of the observation estimates (HXf ) for the
innovation part of the Kalman Filter equations and in the covariance structure for the Kalman
gain. While the latter is more difficult to estimate, the mean state bias can be straightforwardly
visualized for individual proxy record locations. In Figure 5.1, the median difference between
model priors and proxy records is shown for the two climate archive databases. It presents a
qualitative assessment of all five climate models. The median instead of the mean has been
chosen to diminish the influence of potential outliers. The simulated δ18O values have been
converted using all PSM options described in Section 4.1.1. The adjustments that the PSMs
performs on the median state mainly stem from the height correction and the fractionation and
to a small extent from the infiltration/precipitation weighting. The model-data median value
comparison for the individual models, including the correlation coefficients can be found in the
Appendix Figures B.4 and B.5.
The Figures 5.1 (a,b) show, that the simulated values are too depleted in the low-to-mid lati-
tudes and too enriched at the poles. This pattern is also consistent for the individual models.
Especially for the speleothems, close locations can have model biases with different signs, see
for instance the proxy records in South West Australia or in Central America. Absolute model
biases are generally larger for the ice core locations. The proxy record medians (see Appendix
Figure B.3) also exhibit large median state differences for geographically close proxy records.
The PSM is not able to reproduce these heterogeneities. The second panel (c,d) shows that the
interquartile range of simulated δ18O values is more homogenous at the speleothem locations in
comparison to the ice core locations. Despite the better absolute closeness for the speleothem
record values, the third panel (e,f) shows that the correlation between simulated and recorded
δ18O values is better for the ice cores than for the speleothems. For the ice core records, the
regression slopes are closer to the desired value of 1 and the confidence intervals of the regres-
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Figure 5.1: Individual comparison of the simulated δ18O values , which have been converted
using the speleothem and ice core PSMs, to the median of the proxy record time series. All
values are given in h. The proxy records have been limited to the time period of the climate
model simulations (850-1850CE). The left column shows the analysis for the selected speleothem
records from SISALv2 and the right column for the ice cores from Iso2k. The first row shows
the bias of the median of all models (a,b). Blue indicates, that the model median (including the
PSM conversion) is too depleted, while red indicates that the models are too enriched in δ18O in
comparison to the proxy records. The second rows shows the interquartile range of all simulated
δ18O values (c,d) and in the third row the proxy record median δ18O is plotted against the value
of the individual simulations. The correlation of the simulated to measured values is indicated
by the coloured lines and the respective shadings, which show the 95% confidence interval. The
model-data comparison for the individuals model is shown in the appendix Figures B.4 and B.5,
where also the exact correlation coefficients (including confidence intervals) are documented.
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sions are smaller. The isoGSM model stands out due to a lack of depletion at the pole locations
and consequently only has a regression slope of 0.34 (Appendix Figure B.5). There is no model
that clearly outperforms the others for reproducing both speleothem and ice core δ18O and that
should thus be preferred as a PaleoDA prior. It is important to underline, that the model-data
differences can be either a consequence of a real model bias, or of a too-simplified PSM which
does not represent local process properly. Disentangling this problem is not obvious and not
intended here. However, in particular for the speleothem locations, I assume that cave specific
processes which are not represented by the speleothem PSM lead to large differences to the
simulated precipitation δ18O . Thus, the reconstruction of climate anomalies instead of mean
values, as outlined in Section 4.8, is expected to be more reliable, although the assimilation of
absolute values will also be tested.

5.2 Assessment of the influence of the prior

To estimate the influence of the proxy record observations on the reconstructions, the area
of the averaging kernel (Section 2.6.4) is visualized for the surface temperature, δ18O and
precipitation in Figure 5.2. Here, the unmodified δ18O value (no PSM) at all speleothem and
proxy records have been taken. Only annual means have been used. The proxy error was
set uniformly to 0.5h2. This analysis presents a best-case scenario, which is not available in
real proxy record reconstructions. Overall, the patterns differ considerably across the models.
Regions that are consistently influenced in all models and variables are regions with many close
proxy records as the northern part of South America, South Asia and the Northern Atlantic.
Furthermore, remote regions without available proxy records as the low-latitude oceanic regions
(especially the Pacific) are strongly influenced. This is the case in particular for precipitation.
The amplitude varies between the models, as can for instance be seen in the temperature and
precipitation over South America. For temperature, the influence of δ18O measurements is
strongest in the iHadCM3 model, which is also reflected in the global mean value of 1.08, while
the other models have values between 0.6 and 0.75. This can translate into a stronger influence
of δ18O measurements on temperature during the DA. Furthermore, the iHadCM3 temperature
field shows a remarkably continental structure. For the δ18O fields, a strong influence over the
Sahara region is apparent in the iCESM and the isoGSM model, although this region is void of
proxy records. All models consistently show negative values for the central Pacific. The weakest
response is found for the GISS model (global mean 0.24), where also Antarctica is visibly less
affected by the proxy records. For precipitation, the strongest response to the records can be
found in the low latitudes, especially in the Pacific. In the GISS model, checkerboard like
artefacts are visible, especially over tropical South America. The area of the averaging kernel
fields from the separate speleothem and ice core locations (Appendix B.6,B.7) reveal that overall
the influence of the speleothem locations is stronger than the ice core locations. In some regions
like Europe, northern Asia and Greenland, the areas of the averaging kernels have opposite
signs when using only the speleothem or the ice core locations.

5.3 Pseudoproxy experiments

PPEs (Section 4.3) have been performed to test the possible reconstruction skill in a best-case
scenario, in which all selected proxy record locations (217) provide annual mean δ18O values.
The SNR has been set to 0.5 and the experiment has been repeated 10 times with a varying
selection of 100 prior ensemble members. Here, only annual, and no multi-time scale DA has
been performed. The experiments have also been performed using the speleothem and ice core
locations separately.
Figure 5.3 shows the skill scores for PPEs with δ18O from the iCESM model in three exper-
iments. The Corr and CE metrics are used to quantify the reconstruction skill (see Section
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Figure 5.2: Visualization of the relationship of the simulated δ18O at the proxy record locations
to the surface temperature, δ18O and precipitation at all model grid cells. The Kalman gain is
computed from the entire climate simulation runs and then summed up for each model grid cell,
resulting in a metric similar to the area of the averaging kernel. A measurement error variance
of 0.5h2 has been assumed. The proxy record locations are indicated by grey x-markers. The
number in the lower right corner of each subplot is the global mean value of the metric. The
maps using the speleothem and the ice core records separately can be found in the Appendix
Figures B.6 and B.7.



5. Validation of the PaleoDA framework 63

4.3.1). A CE score of zero means that the error variance is larger than the variance of the true
time series.
In the first experiment (a), for the pseudoproxies the annual δ18O values from the grid cell closest
to each proxy record location have not been modified further by a PSM. The best skill scores
are achieved for all three climate variables in the low-latitude oceans and in proximity to proxy
record locations, especially over Greenland, South East Asia, and the Northern Part of South
America. Globally and regionally, the temperature is reconstructed better from δ18O than the
δ18O field itself (0.31 vs 0.24 for CE), while for precipitation the skill is the lowest (CE = 0.21).
In the second experiment (b), the pseudoproxy values of δ18O have been further modified by
the PSM light configuration, which comprises fractionation and infiltration weighting for the
speleothem locations and infiltration weighted δ18O values for the ice core locations. This only
leads to a slight reduction in skill for all variables (∆CE between -0.03 and -0.04). The regional
patterns look similar to experiment (a). With the PSM light, the ice core locations reconstruct
the polar regions better than the speleothem locations (Appendix Figure B.8 and B.8). Although
the speleothems perform better in the low latitudes, the ice core experiments, which also involve
some locations in South America, Asia and Africa also provide notable reconstruction skill in
these regions, especially for the Pacific.
In the third experiment (c), the effect of the karst filter, firn diffusion, and ice compaction
on the reconstruction skill has been further tested. This configuration is called the full PSM.
The karst filter simply convolutes the δ18O signal, whereas the full ice core PSM involves more
modifications of the δ18O signal as it also uses the accumulation of rainfall. The noise of the
pseudoproxies has been added before the application of these filtering effects. Though there
is still correlation to the true climate field, the CE is more than halved and approaching zero.
The reconstruction skill is particularly reduced at the ice core locations at the poles, which also
becomes clear when looking at the results of the same experiments only using the speleothem
or ice core locations (Appendix Figure B.8 and B.8). The ice core PPE with the full PSM leads
to CE values of 0.00 and 0.01. This contrasts to the effect of the karst filter on the speleothem
pseudoproxy records, in which the skill reduction is smaller (CE = 0.07 - 0.12). The experiments
should still provide some reconstruction skill, at least near the proxy record locations. The ice
core PSM thus requires a more thorough analysis, which has not been performed here.

5.4 Investigation of inter-model biases and multi-model ensem-
bles

The experiments in Section 5.3 involved pseudoproxy records and prior ensemble members from
the iCESM model, thus the same model. Having five different isotope-enabled last millennium
simulations available, I also tested how the different models, and a combination of them in
the form of MMEs can be used to reconstruct other (target) models. The target models, from
which the pseudoproxy experiments are sampled, represent the true distribution, while priors
from other models have different mean states and covariances. The MMEs are always created
from simulation years of the non-target models, thus excluding the target simulation. The
same PSM light configuration as in Section 5.3 has been used for the 217 pseudoproxy record
locations. To focus on the more interesting covariance differences of the models with respect
to each other, I performed a simple mean value debiasing by subtracting the local mean value
for each model grid cell. Hence, only climate anomalies are reconstructed. The results of these
experiments are shown in Figure 5.4. The reconstruction skill is summarized in the form of
global means of the RMSE, RE and Corr. The RE metric is similar to the CE used previously,
with the difference that it compares the reconstruction error variance to the error variance of
the mean of the uninformed prior (see Section 4.3.1).
The experiments demonstrate a reduced skill when not using the same model for the prior
and the target. Although the global mean of the local correlations is still positive for all
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Figure 5.3: Skill scores of PPEs for reconstructing the climatic fields of the iCESM simulation
from the simulated δ18O at the speleothem and ice core record locations. The skill is measured
with the correlation and CE metrics with respect to the truth. The global mean of the metrics is
annotated in the upper right corner. The significance of the correlations is not indicated because
almost all local correlations are significant (p<0.05). The pseudoproxies are created with an
SNR of 0.5, which is applied to the simulated δ18O time series before further modifications
by the PSMs. In a), the annual mean δ18O at the proxy record locations is used for the
pseudoproxies. In b), the pseudoproxies are altered by precipitation weighting and fractionation
for the speleothem pseudoproxies and infiltration weighting for the ice core pseudoproxies. In
c), the pseudoproxies from b) are additionally modified by the karst filter for speleothems and
firn diffusion and compaction for the ice cores.
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reconstructions, the RE is close to zero or even negative when not using the target model as
a prior. Only 4 out of 25 such experiments have a positive RE score, which means that the
reconstruction yields a smaller error variance with respect to the truth than would the mean
of the prior, which is not informed by any measurements. The MME ranks among the first
two non-target priors for all experiments and metrics. However, the difference is small and the
skill is close to the other models. Clearer improvements can be seen for the correlation where
the scores differ more than for other metrics. It is noticeable, that the experiments with the
same model as prior-target yield different skill scores, depending on the model. The ranking
between models also depends on which skill score is used. On the one hand, the reconstruction
of GISS and isoGSM yields the smallest root mean square errors, on the other hand, they also
have smaller RE and correlation scores.
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Figure 5.4: Global mean of skill metrics for PPEs in which the climate models were used as
priors to reconstruct the temperature fields of other target models (on the x-axis, denoted also
by inner color of circles). The speleothem and ice core δ18O pseudoproxy records have been
generated from the target model with an SNR of 0.5 (without the karst filter and firn diffusion).
The left panel shows the Root Mean Square Error of the reconstructions (the lower, the better),
the central panel the correlation (the higher, the better) and the right panel the reduction of
error (the higher, the better).

The same evaluation metrics have been computed for the reconstructed global mean temper-
ature (GMT) to investigate if despite of the low local skill, the global mean temperature is
reconstructed better. These results are shown in Figure 5.5. Although the RMSE score is not
directly comparable to Figure 5.4, it is clear that the reconstruction skill of global mean tem-
perature is better for Corr and RE. The RE is positive for 16 out of 25 experiments using non
target models as the prior. Still, the difference to the experiments where target and prior come
from the same model is evident.
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Figure 5.5: Reconstruction skill for global mean temperature using different target and prior
models. Error metrics as in Figure 5.4.



66 5. Validation of the PaleoDA framework

5.5 Variability of multi-time scale pseudoproxy reconstructions

Until this point, the PPEs used pseudoproxy records with annual resolution. The PPEs carried
out in Section 5.4 are now repeated using pseudoproxies which are computed as multi-year
means and thus simulate representation on longer than annual time scales. Here I focus solely
on the variability of the reconstructed GMT using pseudoproxy records on various time scales.
The question is if using proxy records on different, longer than annual temporal resolutions
improves the representation of long-term climate variability.
The power spectral densities (PSD) of the reconstructed global mean temperatures for iHadCM3
using different time scales are shown in Figure 5.6.
To use the same number of data points in each reconstruction, the multi-time scale exper-
iments used an accordingly reduced number of pseudoproxy locations. The total number
of data points for a 1000 year reconstruction using 1, . . . , n resolutions resi is calculated as
1000 × number of locations ×

∑N
i

1
resi

. The target power spectrum of the original simulation
has the typical form of a red spectrum with more variability on decadal to centennial scales
than on annual scales. It ranges from 10−2 to 100 [K2year]. The figure clearly shows, that
experiments using multiple time scales improve the reconstruction of decadal to centennial vari-
ability. In contrast to the annual time scale experiment, which results in a flat spectrum with
underestimated long-term variability, the multi-time scale experiments increase variability on
multidecadal time scales, resulting in a red spectrum. The annual time scale experiment has
also been repeated using 200 instead of 100 pseudoproyxy locations, hence double the number of
data points to test if the result is improved by more data points. The resulting power spectrum
(label 1 many) also lacks longterm variability in the GMT spectrum. Figure 5.6 shows the
results for the iHadCM3 model. The experiment has also been repeated using the four other
climate models. In all experiments, the reconstructions using only annual pseudoproxy records
resulted in a multi-decadal to centennial variability that is one order of magnitude too low,
while multi-time scale pseudoproxy records resulted in a PSD closer to the truth (not shown).
A similar result is found when looking at the global mean PSD of each local temperature (Figure
5.7). The multi-time scale experiments better reproduce larger variability on multi-decadal to
centennial time scales. Additionally, an offset of all reconstructions to the original simulation
can be seen for all periods, also for the annual periods which have a more similar spectral am-
plitude in the PSD for the GMT. This simple analysis involves the local temperature for all
local grid cells, thus also grid cells far away from the influence of proxy records as the oceans.
An analysis of the local PSDs for specific regions and continents has not been performed here.
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Figure 5.6: Power spectral densities of reconstructed global mean temperature using pseu-
doproxies on multiple time scales. The model that has been used as a prior and target is
iHADCM3. The pseudoproxies have been generated from δ18O with an SNR of 0.5 and the
PSM-light configuration for the simulated δ18O at 100 proxy record locations. The noise has
been added to the pseudo proxy records after averaging the time series to the higher time scales.
The lines show the resulting spectra when using different time scales, the brown line shows the
GMT PSD of the target simulation. The annual experiment has been repeated with a doubled
number of pseudoproxy record locations (1 many). The spectra have been generated with the
multi-taper method of the Pyleoclim package (Khider et al., 2022). The GMT curves have been
detrended, but not standardized, which is important to compare the absolute variability of each
time series.
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Figure 5.7: Global mean of the PSDs for each model grid cell (area-weighted). Same experi-
mental configuration as in Figure 5.6.



Chapter 6

Application of multi-time scale
PaleoDA to proxy record data

This chapter is dedicated to the application of the multi-time scale PaleoDA framework to
speleothem and ice core proxy record data from the SISALv2 and Iso2k database. In the
first section, the focus is laid on the global mean time series of reconstructed temperature
and also precipitation. In the second section, I perform a local temperature and precipitation
reconstruction for the region of tropical South America. The reconstructions are compared to
existing reconstructions, in particular the version 2.1 of the Last Millennium Reanalysis (LMR)
(Hakim et al., 2016; Tardif et al., 2019) and the Paleo Hydrodynamics Data Assimilation product
(PHYDA) (Steiger et al., 2018). To distinguish the reconstructions obtained in this thesis, they
are given the name DAISIM(Data Assimilation with Isotopes recorded by Speleothems and
Ice cores on Multiple time scales).

6.1 A global multi-time scale PaleoDA reconstruction for the
last millennium

I performed global temperature and precipitation anomaly reconstructions for the years 800-
1999CE using all climate models separately and in form of an MME. The GISS model has
been excluded from the MME due to the drift in δ18O (Section 3.1). The reconstruction of
absolute values was initially tested, but lead to extreme variations in global-mean temperature
of several degrees and have therefore not been pursued further (not shown). The climate
anomaly reconstructions used the 18th century mean value as a reference period for both the
proxy records and the climate model priors. This century of the pre-industrial period has been
selected because many speleothems and ice cores from the SISALv2 and Iso2k database have at
least one sample measurement there. For the multi-time scale reconstructions, a wide range of
time scales has been set, namely 1,5,10,20,50 and 100 years. The individual time scale of each of
the 108 speleothem and 109 ice core records is inferred from the median time resolution of each
record by the PaleoDA algorithm. The proxy records have been reused on all time scales larger
than their median resolution. The resampling was done with nearest neighbour interpolation
(Section 4.5.2). The resampled proxy record time series were masked with NANs for the parts,
where the original time series does not have any records for a period of 3 times the median
resolution (gap masking factor=3). The observation error variance was set to 0.5h2 uniformly
for all records independent of the time scale, which is larger than the measurement uncertainties
stored in the SISALv2 database in order to account for the unclear representativity of a proxy
record for the entire grid cell of the climate models. The PSM light configuration (precipitation
weighting and infiltration weighting + fractionation) has been used for calculating the δ18O

observation estimates (HXf ) and taking into account the seasonal and local effects. The full
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PSM configuration, which further modifies the local δ18O was judged not necessary for these
types of experiments. Further, the mean value of the 18th century has been subtracted from the
observation estimates. This way, changes in the covariance pattern that follow from the PSM
remain, while model biases in the mean state become irrelevant. For each prior, the experiment
is repeated 10 times with 100 randomly selected ensemble members using all available proxy
records at each repetition.
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Figure 6.1: GMT anomalies from multi-time scale reconstructions using different models as
priors. The MME excludes the GISS model. Furthermore, the GMT from LMR and PHYDA
and the GMT from the climate model simulations (mean±standard deviation) are visualized.
The reference period for the anomaly calculation is chosen as 851-1849CE, because these years
are covered by all climate model simulations. The dotted lines show the GMT anomalies from
LMR and PHYDA. Uncertainties are shown separately in Figure 6.2. The time series have been
low-pass filtered with a 50 year Butterworth filter for better visibility and because the used
climate proxy records are expected to represent multi-decadal variations better than annual
variations.

The low-pass filtered GMT anomaly curves are presented in Figure 6.1. Overall, a hockey stick
form can be recognised in DAISIM, with a cooling trend of 0.2-0.4K during the last millennium.
The cooling starts around 900CE, where the reconstructions indicate a small warm plateau.
The minimum of the cooling is reached in the 18th and 19th century and is followed by a
subsequent strong warming of up to 0.6K. The reconstruction using the GISS model as a prior
stands out due to its smaller fluctuations and missing global warming during the 20th century.
The most pronounced peaks of the curves are shared across all DAISIM reconstructions. In
comparison to the LMR and PHYDA reconstructions, the temperature variability in DAISIM
is more pronounced. Their relative amplitudes are two to three times higher. Apart from the
pronounced global warming in the 20th century, peaks/troughs that coincide across DAISIM,
LMR, PHYDA, and the model simulations can be seen at the beginning and end of the 15th
century and at the beginning of the 19th century. The amplitudes of the temperature changes
depend on the model that is used a prior. The highest peaks are found in the iHadCM3 and
the MME reconstruction. Remarkably, the temperature anomaly obtained from the MME at
times exceed the anomalies from the single climate models, especially in the 20th century.

To better assess the contributions of both climate archive types, speleothems and ice cores,
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Figure 6.2: The reconstructed GMTs from the individual and joint SISAL (speleothems) and
Iso2k (ice cores) databases in comparison to the LMR and PHYDA reconstructions are shown
in the left panel. The uncertainties of the reconstructions are shown in the right panel. The
periodicity is an artefact from the prior block in the multi-time scale approach. The time series
have been low-pass filtered with a 50 year Butterworth filter.

75

50

25

0

25

50

75

La
tit

ud
e

LMR MME

0900 1200 1500 1800
Year CE

75

50

25

0

25

50

75

La
tit

ud
e

MME (SISAL)

0900 1200 1500 1800
Year CE

MME (Iso2k)

2

1

0

1

2

 T
 [K

]

Latitudinal mean temperature wrt 851-1849CE

Figure 6.3: Latitudinal mean temperature anomalies over time (Hovmöller diagram). The
upper left panel shows the LMR reconstruction, the upper right panel the results from the
MME reconstruction using both the speleothems and ice cores. The lower panel show the
reconstructions using only speleothems (SISAL) and ice cores (Iso2k). In comparison to Figure
6.1 and 6.2, the time series have not been filtered. The apparent coarser resolution of MME
in comparison to LMR stems from the multi-time scale approach. 851-1849CE was used as the
reference period.
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the reconstructed GMTs have also been reconstructed from both archive types separately. The
resulting GMT curves for the MME and their uncertainties are presented in Figure 6.2. It
is apparent, that the ice cores have a stronger influence on the reconstructed GMT than the
speleothems over the entire last millennium. Except for the 16th and 17th century, the GMT
from ice cores is closer to the overall reconstruction than the GMT from speleothems. The
speleothem records do not reproduce the global warming trend of the current warm period
(CWP). The evolution of the latitudinal mean temperature is shown in Figure 6.3. The largest
temperature anomalies over the last millennium and the CWP can be found in the high lati-
tudes of the northern hemisphere. The MME reconstructions also show some synchronous, but
less pronounced, temperature variability in the low-to-mid-latitudes, whereas in in the LMR
most temperature variability happens almost exclusively in the high latitudes of the northern
hemisphere. The similarity of the reconstructions using only the ice cores and all proxy records
is also evident in these diagrams, but the speleothem only reconstruction also does exhibit
some temperature variability over the last millennium. The reconstruction uncertainty/error
(Figure 6.2), which is defined as the standard deviation of the posterior ensemble, ranges from
0.14 to 0.20K and is more similar to the LMR reconstructions than the PHYDA reconstruction
whose uncertainty ranges from 0.06 to 0.14K. The uncertainties of all reconstructions inversely
follow the trend of how many proxy records are available, which is expected from the theory
of the Kalman Filter. The uncertainty increase at the end of the 20th century, were many
proxy records end, also reflects this relationship. The uncertainties for the single-model prior
reconstructions lie in the same range and show similar trends, but are up to 0.04K smaller than
the MME estimates (not shown). A striking feature of the MME uncertainty is a centennial
periodicity, which stems from the prior matrix in the multi-time scale algorithm, because the
largest time scale has been set to 100 years. In the single model prior reconstructions, this
periodicity is most visible for the iHadCM3 prior.

To assess the similarity of the GMT curves, the Pearson correlation coefficients of the curves have
been computed and visualized in Figure 6.4. The correlations have been computed separately for
the pre-industrial period (PI) before the onset of global warming (800-1850CE), and the CWP
(1850-1999CE). I did not detrend the time-series on purpose to see if the cooling and warmings
trend are reproduced consistently, although this violates the assumption of stationarity that is
underlying correlation. The assessment performed here is primarily of qualitative nature. For
a more quantitative assessment of the trends other statistical instruments should be used. The
values for the GISS model confirm the apparent lack of similarity to the other curves, both for
the PI and the CWP, in spite of the detrending that has been performed to reduce the δ18O
drift in the GISS simulation. Of the DAISIM reconstructions, the MME, MME iso, iCESM and
isoGSM reconstructions are most similar to LMR and PHYDA with correlations between 0.46
and 0.51. The similarity of the MME using all proxy records and the MME only using the ice
cores (MME iso) in Figure 6.2 is reflected by a high correlation value of 0.92 (95% confidence
interval 0.91-0.93). LMR and PHYDA, which are based on the same proxy record data but use
different climate models as priors, have a GMT correlation is 0.61 (0.57-0.65). During the CWP,
due to the global warming trend, the not-detrended correlations are larger. The MME ensemble
based on ice core data only has the best correlation with respect to the instrumental Berkeley
Earth (BE) (Rohde and Hausfather, 2020) time series (0.8, 0.73-0.85) after PHYDA and LMR,
which have a correlation of 0.89 (0.86-0.92) and 0.92 (0.90-0.94). The MME has a very high
correlation of 0.99 (0.99-0.99 due to rounding) to the ice core data only reconstruction.

The local correlations between the MME and the LMR reconstruction are shown in Figure 6.5
for the PI and the CWP. During the PI, both climate fields are most similar over Greenland,
West and East Antarctica as well as the Arctic. This is also the case when the local time series
are detrended (not shown). The largest patches of dissimilar climate fields with non-significant
correlations can be found in Asia and in the central Pacific. In the CWP, the dissimilar patch
over Asia disappears. Regions without significant correlation can still be found in the Northern
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Figure 6.4: Heat map visualizing the correlation between the time series in Figure 6.1 and 6.2.
The correlations are computed separately for the PI (left panel) and the CWP (right panel).
The time series have not been detrended to assess similarity including the cooling and warming
trends. No filtering of the signals has been performed. The CWP evaluation also includes the
correlation with the observational GMT from the Berkeley Earth dataset (BE) (Rohde and
Hausfather, 2020). mme sisal and mme iso refer to the multi-model ensemble reconstructions
with the separate SISALv2 and Iso2k database records. The 95% confidence intervals of the
correlations can be found in Appendix Figure B.10.
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Figure 6.5: Correlation fields between the MME reconstruction (using both databases) and the
LMR. The left panel shows the correlation for the PI (800-1850CE) and the right panel for the
CWP (1850-1999CE). The local time series have not been filtered. The time series have not
been detrended. The stippling indicates non-significant correlations (p>0.05).
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Figure 6.6: Power spectral densities of the DAISIM-MME reconstructions, LMRv2.1 and two
reconstructions included in Neukom et al. (2019a), CPS and PAI. CPS (composite plus scaling)
uses only annually resolved proxy records, whereas PAI (pairwise comparison) also uses non-
annually resolved proxy records. The red shading indicates the range of spectra of the climate
simulations used as priors. The spectra have been generated by applying the multitaper method
to the non-standardized, detrended GMTs in the time period from 800 to 1850. The peak
between 2 and 5 years for the models maily stems from the ECHAM5 simulation.

Pacific and close to the Antarctic circle.

To investigate the spectral composition of the reconstructed GMTs, the power spectral densities
(PSD) of the DAISIM-MME reconstructions are plotted aside the LMR and two reconstructions
from Neukom et al. (2019a) in Figure 6.6. The Figure also contains the PSD range of the last
millennium simulations used as priors. The Neukom et al. (2019a) reconstructions are based on
(almost) the same proxy record data as LMR 1, but use different CFR methods.

All PSD curves have a red spectrum, meaning that variability increases with period length.
On all displayed time scales, the climate model priors exhibit most variability. The MME
speleothem reconstruction has the least variability for annual to decadal time scales. However,
this lack of variability is expected because many speleothems are used on longer than annual time
scales. Exempt this reconstruction, the GMT from LMR has the least variability for decadal
to centennial time scales. Here, only two other reconstructions from Neukom et al. (2019a)
are shown for better visibility, but the lack of decadal-to-centennial variability is also visible
in comparison to their other reconstructions. The PSD of the MME for decadal to centennial
time scales provides a middle ground between the most and least variable reconstructions from
Neukom et al. (2019a).

The curves of reconstructed global mean precipitation are shown in Figure 6.7. They also
follows a hockey stick like curve over the last millennium, although the handle seems flat. A
decrease in precipitation as for temperature over the last millennium is not noticeable by eye.
The amplitudes of the precipitation peaks from the reconstructions performed in this thesis are

1Neukom et al. (2019a) contains the first version of LMR, while here the LMR version 2.1 is displayed. It uses
an extended proxy record database similar to the one used by the PHYDA reconstruction (Steiger et al., 2018).
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Figure 6.7: The left figure shows the global mean precipitation anomaly of the DAISIM re-
constructions, LMR and the climate model simulations. The anomaly period is chosen as
851-1849CE. The time series have been low pass filtered with a 50 year Butterworth filter. The
right figure shows the correlation heat map for the period 800-1850CE. The confidence intervals
of the correlations can be found in Appendix Figure B.11.

more similar to the LMR reconstruction than for temperature. However, the signal phases are
more different from each other, as indicated by the low correlation values in the corresponding
correlation table. As for temperature, the signal from the MME is more similar to the MME
based on ice cores only than on speleothems (correlation of 0.84 (0.82-0.86) against 0.44 (0.39-
0.49)).

6.2 Reconstructions of temperature and precipitation in tropi-
cal South America

To give an example of the characteristics of reconstructed regional climate (anomaly) fields,
the temperature and precipitation fields over tropical South America have been reconstructed
separately. This region is particularly interesting for studying the potential benefits of incorpo-
rating speleothems into last millennium CFRs. The PAGES2k database, on which the PHYDA
and LMR reconstructions are based, only contains few proxy records from that region, mainly
tree data from the Southern Cone. Speleothems from South America are known to capture
the history of variability of the South American Monsoon system, which governs the amount of
rainfall in that region (Novello et al., 2018). Therefore, an anomaly reconstruction only using
proxy records from that region is performed for the period 500-1999CE. Again, the 18th century
is the reference period for the anomaly reconstruction. The starting point is set 500CE due
to the availability of various records in that region even before 800CE. The reconstruction is
based on 11 speleothems from South America, 7 from Central America and the Quelcaya ice
core record. Except for the annually dated Quelcaya record, which represents annual variation
in δ18O , the proxy records are uniformly resampled to 10 year means using the resampling
technique for the multi-time scale DA. The proxy record error variance is set to 0.2h2, thus
smaller than in the global experiment because the proxy records are used on less timescales.
The results are compared to the LMR reconstructions, which provides both temperature and
precipitation fields. The Southern Cone region below 57◦S is not studied due to the lack of
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Figure 6.8: Mean precipitation anomaly (upper panel) and temperature anomaly (lower panel)
for the core monsoon region as defined in Vuille et al. (2012) from three DAISIM reconstructions
(iCESM, isoGSM, MME), LMR, PHYDA and the climate model simulations (mean±standard
deviation). The PHYDA reconstruction does not provide precipitation fields and is thus not
included in the first panel. The reference period is 851-1849CE.

speleothem and ice core proxy records in that region. Although it is in part included in the
figures, it is not discussed in the analysis here.

To asses changes in rainfall over tropical South America during the last 1500 years, a simple
index for the intensity of the South American Monsoon is defined as in Vuille et al. (2012).
It is calculated as the mean rainfall over the core region of the South American Monsoon
(5◦ S - 17◦ S/72.5◦ W - 47.5◦ W) (see the blue box in Figure 6.9). Figure 6.8 presents the
precipitation and temperature anomalies from that region using iCESM and isoGSM, which
are the models of highest spatial resolution, and the MME (excluding GISS). The MME uses
climate fields regridded to the resolution of isoGSM. The figure also shows the precipitation
anomaly reconstructed by the LMR, which is almost unchanged during the last millennium.

The reconstructions performed for this thesis indicate a pronounced wet phase in the core
monsoon region from the 16th until the 19th century, the so-called Little Ice Age (LIA). IsoGSM
exhibits the largest amplitudes in the precipitation anomaly signal of up to 5mm/month. The
model simulations do not show a clear wet period during the LIA.

For the temperature anomaly of that region, during the LIA a cooling can be recognised for all
reconstructions (∼ −0.25K), although it is almost indistinguishable for the LMR reconstruction.
In contrast, the PHYDA temperature reconstruction indicates a stronger LIA cooling. The
reconstructed temperature fluctuates less for the isoGSM model and more for iCESM and
the MME, which is the opposite of the situation for precipitation. The MME and iCESM
reconstructions indicate warm phases from the 12th until the 14th century.
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The temperature anomaly for the region in the simulations follow the simulated GMT, which
is mainly influenced by the imposed volcanic forcing and seen in form of troughs for instance in
the 13th, 15th and 19th century. The exceptionally strong 1815 eruption of Mount Tambora in
Indonesia is also visible in the reconstructions for the core monsoon region.

6.2.1 Centennial temperature and precipitation fields

To investigate the climate over tropical South America further, the centennial mean temperature
and precipitation fields are visualized in Figure 6.9 and 6.10. The corresponding fields from
LMR, which do not exhibit much variation, can be found in Appendix B.12 and B.13. The
LMR suggests little changes in precipitation and temperature during the last millennium. In
contrast, the DAISIM-MME reconstruction has more spatially and temporally variable patterns.
According to that reconstruction, the period from the 16th until the 19th century was cooler than
the 800-1850CE mean for each region except for the north eastern tip of Brazil (Nordeste), which
shows a particular behaviour. This region appears cooler than the millennial mean until 900CE.
The closest proxy record shows a strong δ18O depletion during that period. The precipitation
anomaly field is less homogenous than the temperature anomaly field. The MME reconstruction
indicates that tropical South America was drier in the period from 500-1500CE and then went
into a wetter phase until the 20th century. The peak of the wet phase occurred during the
18th century, which was wetter than the mean for almost all the continental parts of tropical
South America and Central America. According to the MME reconstruction, the Nordeste was
wetter than the mean from 500-900CE, a pattern similar but more spatially extended than
the cold anomaly for temperature during that period. The 11th century is the only century
apart from the 20th century, in which dry conditions over all tropical South America prevailed.
For the climatic anomalies over the oceans surrounding the land mass, different patterns for
temperature and precipitation are evident. Whereas temperature changes have the same sign
for the land and the ocean, the patterns are more complex for precipitation. Dry conditions over
land were accompanied by wetter conditions in the equatorial eastern Pacific and vice versa.
For instance, during the peak terrestrial wet phase of the 18th century, the eastern equatorial
Pacific was drier than average.
In the Figures 6.9 and 6.10, the proxy record anomalies which have been drawn on the climate
anomaly fields help interpreting the results. They often show a dipole between the proxy
records from the northern/eastern part of tropical South America and the southern/western
part. In the reconstructions of temperature and precipitation, this dipole is mostly reflected
in form of the anomaly over north-eastern Brazil. This follows the common interpretation of
δ18O in precipitation: More depleted δ18O values are interpreted as stronger rainfall and colder
temperatures. However, the record in the northern part of Brazil near the mouth of the Amazon
river stands out the reconstructed fields. This exceptionality is also visible in the reconstruction
of the δ18O fields (Figure 6.11) in a less pronounced form. This reconstruction also exemplifies,
how the δ18O proxy record anomalies are converted into δ18O anomalies of smaller amplitude
by the EnKFs due to the proxy and model errors, as well as the PSMs.



6. Application of the PaleoDA framework 77

500-600 600-700 700-800 800-900

900-1000 1000-1100 1100-1200 1200-1300

1300-1400 1400-1500 1500-1600 1600-1700

1700-1800 1800-1900 1900-2000

6 3 0 3 6
 Prec [mm/month]

1.60.80.00.81.6
Proxy record ( 18O) [ ]

Precipitation Anomaly (MME) 
 wrt 800-1850CE

Figure 6.9: Centennial mean precipitation anomaly fields for tropical South America from the
6th to the 20th century using the MME. The dots indicate the available proxy records during
the centuries and their colour the centennial mean anomaly with respect to the reference period
of 851-1849CE. The values of the colorbar go from positive to negative values to facilitate the
interpretation in terms of precipitation (more depleted values equal more precipitation). The
blue box is the core monsoon region as defined in Vuille et al. (2012).
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Figure 6.10: Centennial mean temperature anomaly fields for tropical South America from the
6th to the 20th century using the MME. Note, that in comparison to Figure 6.9 the colorbar for
the proxy record anomalies is reversed, in order to facilitate their interpretation (more depleted
values equal colder temperatures).
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Figure 6.11: Centennial mean δ18O anomaly fields for tropical South America from the 6th to
the 20th century using the MME. Note the differing ranges for the proxy record values and the
δ18O field. The different ranges and colormaps have been chosen for illustrating that the large
proxy record anomalies are not reflected in amplitude by the reconstruction.



Chapter 7

Discussion

7.1 Characteristics of reconstructed temperature and precipi-
tation

The reconstructed GMT anomalies from DAISIM for the period 800-2000CE exhibit the well-
established patterns of a long-term cooling trend which reaches its lowest point in the period
of the LIA in the 16th to 19th century (Figures 6.1, 6.2 and 6.3). The cooling is reverted by a
sharp increase since the onset of the CWP in the 19th century. This pattern was reproduced
consistently by all model priors, except for the reconstruction using the GISS model, which
reproduces neither the cooling nor the warming. Although the model priors are simulations
for the years 850 to 1850CE, they can thus be used to reproduce the global warming trend.
The model priors serve as covariance structure providers in the offline PaleoDA scheme. The
reconstructed cooling trend is part of a global cooling which started during the mid-Holocene
(8000BP) (Gulev et al., 2021; Marcott et al., 2013). DAISIM indicates a relatively warm phase
around 900-1000CE, which would fit into the nowadays refuted narrative of the Medieval Cli-
mate Anomaly(MCA) as a globally warm period (Neukom et al., 2019a). However, there is
only little proxy data available during that period (∼ 30 proxy records per year) and this pe-
riod just marks the beginning of the DAISIM reconstructions. While it would have also been
possible to use the available speleothem and ice core data for reconstructing the climate sig-
nal from the year 0CE onwards, there are even fewer available proxy records before 800CE.
Although the terms Medieval Climate Anomaly and Little Ice Age are used in this thesis to
describe periods of the climate during the last millennium, a cautionary use of these terms
is advised. Neukom et al. (2019a) showed, that in contrast to the CWP, there were no warm
and cold periods that occurred at the same time on the whole planet during the last millennium.

The GMT changes in DAISIM appear disproportionately strong in amplitude in comparison
to PHYDA and in particular the LMR (Figures 6.1, 6.2 and 6.3), which suggests temperature
changes of 0.1-0.2K instead of 0.4K. It is important to note, that the LMR stands out in com-
parison to other reconstructions of the last millennium, for instance from Neukom et al. (2019a)
(see their Figure 1), that do exhibit temperature variation amplitudes similar to or even larger
than DAISIM. LMR and PHYDA are calibrated on instrumental data which follows the warming
signal of the CWP and then use the obtained statistical relationship for the PSM over the whole
last millennium. This calibration method might decrease the impact of proxy data further back
in time1. The Hovmöller diagrams of the latitudinal mean temperature (Figure 6.3) show, that
the largest changes in temperature can be found in the high latitudes, and that the cooling trend

1It is noticeable, that LMR which only uses the anomalies from 1951-1980 for the calibration shows smaller
temperature variations than PHYDA, which calibrates the proxy record data from 1920-2000. The precise
methodologies employed by PHYDA and LMR have not been compared systematically yet, such that my hy-
pothesis remains to be tested.
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in the GMT is mainly caused by temperature changes at the poles. The DAISIM reconstructions
also exhibit larger temperature variations in the low-to-mid-latitudes, which are less visible in
the LMR. In the LMR, larger temperature variations occur mainly in the high latitudes of the
northern hemisphere. It can be summarized, that the GMT anomalies in DAISIM are realistic,
and thus comparable to existing reconstructions. This result encourages incorporating the ice
core and speleothem proxy record data into reconstructions based on the PAGES2k database. It
will then be possible to estimate, to what extent the sharp increases and declines reconstructed
by DAISIM are sustained or refuted by other types of climate archives. The DAISIM temper-
ature fields are most similar to the LMR across Greenland and West Antarctica (Figure 6.5).
The large correlations could be rooted in a proxy record data overlap of DAISIM and LMR,
which also uses some ice core records from these regions. However, LMR uses a calibration of
ice core δ18O to temperature instead of the δ18O values in the DA, such that a similarity does
not necessarily have to arise. To confirm the hypothesis of the similarity due to a proxy data
overlap, a careful investigation of the reconstructions in these regions is required. One should
also compare the difference of using the statistical calibration of δ18O to temperature and δ18O
directly for these regions. Such a comparison has been performed with simulated ice core data
by Dee et al. (2016), who found similar reconstructions for both PSM types in the high latitudes.

The reconstructed precipitation changes during the last millennium are more similar in am-
plitude range for the LMR and the reconstructions (Figure 6.7). However, as expected there
is less temporal coherence, which is also noticeable between the reconstructions using different
model priors. Precipitation changes are often more regionally constrained and less uniform than
temperature changes. The mean decorrelation lengths of simulated δ18O to precipitation in the
climate models are typically shorter than the decorrelation lengths for temperature (not shown).
The difficulty of reconstructing precipitation is also reflected in the decreased reconstruction
skill of the PPEs in comparison to reconstructing temperature and δ18O fields (Figure 5.3).
Interpreting the resulting precipitation curves thus has to be done with caution. The LMR
reconstruction can not be considered a good baseline, because the employed proxy record data
from PAGES2k primarily reflects temperature and not precipitation changes. To enhance the
DAISIM reconstruction of hydroclimate, a natural choice would consist of using more climate
archive types from the Iso2k hydroclimate archive database (Konecky et al., 2020), which for in-
stance comprises proxies such as δ18O from wood or lake sediments. Proxies of hydroclimate can
be difficult to interpret. Depending of the archive type, they often not only reflect precipitation,
but also soil moisture changes, thus the combined effect of precipitation, evapotranspiration,
and soil water processes (Consortium, 2017). Therefore, variables better suited for hydroclimate
reconstructions as the Palmer Drought Severity Index (PDSI) and the Standardized Precipi-
tation Evapotranspiration Index (SPEI) have been developed, which are also included in the
PHYDA last millennium reconstruction instead of precipitation. Reconstructing these would
permit a comparison to the hydroclimatic fields from PHYDA.

To perform a more meaningful reconstruction of precipitation changes, I have laid the focus on a
regional reconstruction over tropical South America. It is an archetypical region for speleothem
studies, as speleothem records from numerous caves have been sampled and published and
the availability of other climate archives, especially in the center of the continent, is limited.
Speleothems from tropical South America are considered reliable archives of intensity changes
of the South American Summer Monsoon (SASM), which leads to a pronounced wet season
during the months of December, January, and February (Zhou and Lau, 1998). DAISIM found
an increased wetting during the LIA, with a peak during the 18th century for both the core
monsoon region and the northern part of South America (Figures 6.8 and 6.9). This result
concords with studies that interpreted single-or multiple speleothem records (Bird et al., 2011;
Campos et al., 2019; Deininger et al., 2019; Orrison et al., 2022; Vuille et al., 2012), thus in part
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the same records as used for DAISIM. The key difference is, that the PaleoDA method allows
for a CFR, which enhances the interpretation of proxy record data. The mentioned studies also
see the speleothem records as indicators of a marked dry period during the MCA, especially
in the 11th and 12th centuries. The DAISIM reconstructions for South America support this
hypothesis, though it is better visible in the negative precipitation anomaly fields for parts of
northern and central South America than for the core monsoon region. Looking into the time
periods associated with the MCA and the LIA shows, that the dry and wet phases were not
homogeneous over the whole continent. The north-eastern part of Brazil (Nordeste) stands out,
which is also reflected in the δ18O dipole between eastern and western South American records
and that has been discussed extensively in the literature (Deininger et al., 2019; Novello et al.,
2018). Changes in the hydroclimate of tropical South America have been attributed to changes
in the SASM, which are driven by latitudinal displacements of the Intertropical Convergence
Zone (ITCZ) (Vuille et al., 2012) and the South Atlantic Convergence Zone (SACZ). The vari-
ability of the latter has been taken as an explanation in variations of the δ18O dipole between
eastern and western South American records (Novello et al., 2018). The LMR reconstruction
stands in strong contrast to the DAISIM precipitation anomalies for South America, as it sug-
gests only very little precipitation variability over the whole continent and the core monsoon
region (Figures 6.8 and B.12). This result primarily reflects the lack of proxy record data
from the region in the PAGES2k database LMR uses. LMR uses proxy records from Central
America, the Quelcaya ice core record from the Andes, and tree data from the Southern Cone.
Future PaleoDA studies building on DAISIM could strengthen these assumptions by explicitly
assimilating climate indices for the ITCZ and SACZ position, as well as by assimilating also
more climate variables of the atmospheric conditions, for instance sea level pressure.

Speleothems from South America are usually not interpreted in terms of temperature changes.
However, PaleoDA also allows for the straightforward reconstruction of temperature from the
South American records (Figure 6.8 and 6.10). During the LIA (16th-19th century), DAISIM
exhibits a pronounced decrease in temperature for both the core monsoon region and the north-
ern and central parts of South America(Figures 6.8 and 6.10). The preceding centuries showed
warmer conditions, especially the 12th century, which could be seen as the MCA for that region.
The δ18O dipole is reflected in form of colder conditions in the Nordeste from the 6th until the
10th century. The reconstructed spatial patterns reveal a possible issue of the PaleoDA method
in terms of spatial variability. The centennial anomalies of the single record in the north of
Brazil (Paraiso cave) do not fit into the reconstructed climate fields if depletion of δ18O is
interpreted as decreased temperature or increased precipitation. The dipole pattern over the
Nordeste could have been expected to extend further north and west. The Paraiso cave lies
in a special location. The precipitation at the cave location comes predominantly from the
tropical Atlantic, whereas the western and southern regions of tropical South America receive
precipitation that has undergone more processes in the lowlands (Wang et al., 2017). Having
more proxy records in the western and southern parts of tropical South America might bias the
reconstruction toward the anomalies recorded in these regions.

It would also be particularly interesting to see if the covariance structures in the climate model
simulations support the δ18O dipole over South America. The EnKF uses the spatial covariance
of the model simulations to spread the information from proxy records to nearby locations and
provides a fit of the model and the proxy data. It can be supposed that it tends to produce
spatially too homogeneous climate fields. Reduced spatial diversity by the EnKF in PaleoDA
has not been assessed systematically yet. However, it has been mentioned in the Holocene
reconstruction by Erb et al. (2022) (see the outstanding proxy record anomalies in their Figures
9 and 10), or in the study of spatial temperature correlations of last millennium reconstructions
by Bakker et al. (2022) (see their Figure 6). Investigating and potentially improving the spatial
heterogeneity of CFRs obtained through PaleoDA with the EnKF might be an opportunity to
justify the use of covariance localization, which limits the influence of distanced proxy records
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and would thus also limit the influence of regions which have more proxy records than others.
The spatial homogeneity of reconstructed fields could be quantified in terms of the spatial
degrees of freedom (Bretherton et al., 1999) and how these are limited by the degrees of freedom
in the prior simulations.
The DAISIM-CFRs of tropical South America demonstrate the potential of incorporating speleo-
them records into CFRs. However, DAISIM only represents a prototype of what could be even
more insightful reconstructions. DAISIM could be further refined by making use of data from
PAGES2k and Iso2k data that has not been used to obtain a more complete and reliable picture
of the climatic changes on the continent. For instance, a lot of tree data is available for the
Southern Cone, which is also data that the LMR used. The Southern Cone has not been
considered here because of the lack of speleothem and ice core data. It is noticeable, that it
is one of the few regions where the MME and LMR reconstructions do not have a significant
correlation for both the PI and CWP (Figure 6.5). According to the area of the averaging kernel
(Figure 5.2), this region is less influenced by the speleothem and ice core locations than the
rest of South America. With its large variety of available climate archives, the South American
continent could also make an ideal test bed to study the fundamental issue of distinguishing
the effects of dynamic and thermodynamic changes on hydroclimate. An important caveat in
all the DAISIM reconstructions, which will also be discussed in the following section, is that no
systematic sensitivity tests concerning the defined proxy record error and time scales have been
performed. However, these prototype global and regional reconstructions imply, that meaningful
multi-time scale reconstructions with the ice core and speleothem proxy records are possible.

7.2 Influence of speleothem and ice core records on the last
millennium reconstructions

The correlation analysis showed, that the reconstructed GMT and precipitation signal is mainly
influenced by the ice core records (Figure 6.5). This is also reflected in the uncertainty/estimation
error, which is smaller for the reconstruction from ice cores (Figure 6.2). This does not sup-
port the hypothesis, that the speleothems could contribute more information because they are
spatially better distributed, whereas the available ice core records are mainly clustered around
specific locations such as Greenland and West Antarctica. First and foremost, I suspect the
larger influence of the ice cores to be a consequence of larger anomalies in the signal of the
ice cores. In the Hovmöller diagrams of the latitudinal mean temperature (Figure 6.3), the
DAISIM-MME reconstruction based on ice cores exhibits larger temperature fluctuations than
the speleothem reconstruction, both for the high and the low latitudes. The diagrams of both
LMR and DAISIM reveal, that the largest temperature changes over the last millennium can
be found at the poles. The cooling trend in the GMT over the last millennium is thus also
mostly a phenomenon recorded at the poles. Due to the phenomenon of polar amplification,
the poles are more sensitive to changes in the GMT. Hence, ice cores from these regions may
be better recorders of these changes than remote speleothems in the low-to-mid latitudes. The
ice cores are also crucial for reconstructing the temperature increase during the 20th century in
DAISIM, which cannot be reconstructed by using solely the speleothems. This is probably due
to the locations of the speleothems, their lower temporal resolution and thus fewer available
data points. However, dismissing the speleothems as proxy records for reconstructing global
climate changes would not do them justice. The Hovmöller diagrams (Figure 6.3) show, that
in the low-and-mid latitudes temperature changes are indeed reconstructed. Regionally, the
reconstructed precipitation changes over tropical South America are an example of what could
not have been reconstructed using ice core data alone. The global MME Iso2k reconstruction
is not able to reproduce the pronounced precipitation over tropical South America during the
LIA and MCA (not shown).
Furthermore, I see the possibility that the MME experiment disproportionally favoured the
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ice core records due to how it was conducted. First, an important, yet fairly unconstrained,
variable in the experiments is the error variance attributed to the proxy record time series. In
the global reconstruction, it has been set uniformly to 0.5h2 due to a lack of better constraints.
This value is larger than most measurement uncertainties provided by the databases. In the
Kalman Filter, the observation error is weighted relative to the variance of the PSM-converted
δ18O. δ18O is more variable at the poles. Hence, a globally fixed proxy error is less relevant
there, which could lead to an increased influence of the ice cores. The lack of constraints for
the proxy record error is currently a limiting factor in PaleoDA (when not using the statistical
PSM). Second, in the multi-time scale approach here, proxy records have been reused on all
time scales larger than their median resolution by computing the respective multi-year mean to
give more weight to the limited proxy record data. As most ice core records are of annual reso-
lution, they have been effectively used more often than the more coarsely resolved speleothems.
Sensitivity tests for quantifying the effect of reusing the proxy records, and which time scales
are adequate need to be performed. The DAISIM reconstruction only presents one realization
out of a diverse set of options. Multi-timescale PaleoDA is still in its very early phase and has
not been employed for the last millennium before.

Before the application of the PaleoDA framework to the real proxy data, a preliminary analysis
in form of PPEs (Figures 5.3, B.9 and B.8) and the area of the averaging kernel (Figures 5.2,
B.6, and B.7) was performed. This analysis did not indicate, that using the ice core locations
would have such a larger impact. The question thus is, how the DAISIM reconstructions and
the PPEs could be reconciled in future studies.

The main shortcoming of the PPEs, which were also meant to validate the PaleoDA framework
as such, is that they were not adapted to the real temporal and spatial availability of the proxy
record data. A realistic simulation with PPEs would need to take into account the time scales
of the individual proxy records and at which time proxy records are actually available.

Furthermore, the pseudoproxies need to be created via realistic PSMs. The PPEs involved
speleothems and ice core PSMs on varying levels of complexity. However, the results from
pseudoproxies created with the compaction and firn diffusion as in Dee et al. (2015) were in-
conclusive due to a total lack of reconstruction skill. In consequence, the ice core PSM has not
been employed in the DAISIM reconstructions, where only a slight modification of the simulated
δ18O via the precipitation weighting was performed. In its practical use, the ice core PSM also
showed to be prone to numerical instabilities and thus needs a reevaluation. Only two PaleoDA
studies have used this particular ice core PSM. It was employed in the pseudoproxy study by
Dee et al. (2016) alongside PSMs for other climate archives. The authors assumed a small,
non-realistic proxy record error. No fundamental flaws with the ice core PSM seemed to occur.
Steiger et al. (2017) also used the ice core PSM with δ18O from ice cores and isotope-enabled
simulations for the CWP, but were not able to reconstruct the global warming trend. The
authors did not test if using the simulated δ18O without the PSM would have led to better
results. In the PPEs performed here, the use of the full speleothem PSM, including the karst
fractionation and filtering process, for pseudoproxies produced more promising results than the
ice core PSM. By selecting data points on non-annual time scales it could be used to simulate
the low-temporal resolution of speleothem records.

An important aspect of PSMs not touched upon in this thesis is their use to inhibit seasonal
biases on the reconstruction via a modification of the local covariance to annual mean values.
Some proxy records represent seasonal means instead of annual means, and it has been hypoth-
esised that Holocene temperature reconstructions, e.g. Marcott et al. (2013) are affected by
these. For instance, the speleothem records from South America used for DAISIM are mainly
created during the summer monsoon season (Bradley, 2015). This effect is accounted for by the
monthly precipitation and infiltration weighting for the calculation of annual δ18O, but the sea-
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son during which a proxy record could also be set explicitly. For the observation operator this
would mean only using specific months in the calculation of the annual mean δ18O. This way,
PaleoDA becomes a great tool for artificially testing the influence of specific seasonal means on
the annual reconstructions, as performed by Erb et al. (2022). Future studies using speleothems
and ice cores should look explicitly into potential seasonal biases of the proxy records and how
precipitation and infiltration weighting compares to the explicit setting of months for the sea-
sonal means.

In their general use in PaleoDA, PSMs have the purpose of representing the relationship of the
simulated climate variables to the proxy record observations for both the mean and the covari-
ance. In the anomaly reconstructions performed here, the importance of the PSM is restricted
to the covariance relationship. It is unclear if in the case of isotope-enabled model simulations,
the covariance relationship to simulated temperature and precipitation has to be further altered
by the PSM, which would especially be the case when filtering effects are incorporated. Further-
more, the PSM should also be connected to the proxy record error variance mentioned earlier as
is required by the Kalman Filter (Equation 2.3), and not be set arbitrarily. To fulfil these needs,
I conclude that specialized PSMs focused on the application in PaleoDA need to be developed.
In PaleoDA, it is more important to reproduce the spatial covariance than to represent the local
process of a cave/ice core location. Once commensurate PSMs, proxy errors, and time scales for
the proxy records have been established, it would make sense to perform PPEs to mimic real
reconstructions. Then, the original question of how different archive types contributed to the
reconstruction could be more meaningfully answered. For instance, the proxy record and prior
influence could be investigated by means of the Kalman gains for each location, the area of the
averaging kernel or a new statistical approach proposed by Harris et al. (2021), which charac-
terizes the added value of proxy records in PaleoDA reconstruction by statistically comparing
the prior and posterior distributions. In addition, it should be studied how many records are
necessary and which degree of spatial independence between them is needed to meaningfully
reconstruct global means and climate fields.

To conclude this section, the sensitivity tests of using speleothem and ice core records sepa-
rately reveal that the impact of speleothem and ice core records on the reconstruction is yet to
be understood. The correlation and Hovmöller diagram analysis show a pronounced contrast
between the real reconstructions and the PPEs. Reconciling them by refined PPEs will help in
understanding both, and the underlying mechanisms of PaleoDA better. However, it remains
to be estimated if the model priors provide climate variations that are sufficiently temporally
and spatially variable to perform such PPEs.

7.3 Temporal variability of the climate reconstructions

Climatologists’ understanding of Earth’s climate variability is based on climate proxy records,
reconstructions, and model simulations. A key task lies in finding mechanisms to understand the
represented climate variability, and assessing how differences between models, reconstructions
and proxy records can be reconciled. Therefore, it is essential to understand how climate
variability is reconstructed by a CFR method such as offline PaleoDA with the EnKF and if
the method has spectral artefacts. This aspect of PaleoDA has not been systematically assessed
yet. However, in the GMT reconstructions presented by Neukom et al., 2019a, it is apparent
that the PaleoDA reconstruction has the lowest variability on decadal to centennial time scales
compared to other CFR techniques.

A central motivation behind this thesis was the incorporation of speleothems and ice cores into
PaleoDA reconstructions to gain a more realistic representation of climate variability on decadal
to centennial time scales. The lack of decadal to centennial variability in climate simulations
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compared to climate archives has been demonstrated in numerous independent studies as Bühler
et al. (2022), Ellerhoff et al. (2022), and Laepple and Huybers (2014). Here, I focused more
on the temporal variability of GMT than the local variability at the individual model grid
cells, although the reported model-data mismatch especially refers to the latter. The DAISIM
reconstruction using both speleothems and ice cores reproduced larger GMT variability on
decadal to centennial time scales compared to the LMR (Figure 6.6). However, this result
seems to stem mainly from the ice core records, as the GMT reconstruction based only on the
speleothem records lacked variability on all time scales. The speleothems might have contributed
to variability at the local level, which has not been investigated here.
Extending the annual PaleoDA algorithm to a multi-time scale algorithm, which was a basic
necessity for the incorporation of non-yearly resolved proxy records represented an ideal oppor-
tunity to look into the reconstructed variability with PPEs. Simple PPEs reusing pseudoproxies
on various time scales clearly demonstrated, that the incorporation of pseudoproxy records on
longer-than-annual timescales improved the representation of decadal to centennial variability
on both the local and global level (Figures 5.6 and 5.7). This finding contradicts the idea, that
information about the spectrum of temperature is already carried by the annual proxy records
in PaleoDA, corroborating the hypothesis by Steiger and Hakim (2016), who initially developed
the concept of multi-time scale PaleoDA. To strengthen the findings, the experiments should be
repeated using a more diverse set of possible proxy record locations and by varying the proxy
record error, which was set as realistically large here. In addition, a set of possible time scales
on which proxy records can be used should be tested to identify critical time scales where the
multi-time scale approach does make a difference. Future studies with additional comparison
to the spectra of the proxy records are required to determine how local variability is translated
into local and global climate variability in the PaleoDA-algorithm. Apart from these sensitivity
tests, a more mathematical investigation of the differences in the covariance structure on various
time scales could be attempted to better comprehend the multi-time scale algorithm.
The lack of investigation on the topic of climate variability in PaleoDA reconstructions is mani-
fest. Although the Holocene temperature reconstruction by Erb et al. (2022) used a multi-time
scale PaleoDA approach to enable more temporal variability in the reconstruction, the authors
did not assess the reconstructed variability. Multi-time scale PaleoDA is a field that needs yet to
be established and also justified. In contrast, there are studies investigating the reconstructed
temporal climate variability for other CFR methods. For instance, Smerdon et al. (2016) looked
into the local scaling coefficients for pseudoproxy reconstructions produced by regression-based
methods. Nilsen et al. (2018) assessed the performance of the Bayesian Hierarchical Model
BARCAST by performing statistical tests on the spectral characteristics of reconstructed time
series.
The results presented here shed first light on how offline PaleoDA with the EnKF influences
the reconstructed temporal variability as a CFR method. Making use of the multi-time scale
approach and ice core and proxy record data, the PaleoDA reconstructed larger climate vari-
ability than existing PaleoDA reconstructions. The reconstruction of variability is a topic of
fundamental importance, which needs to be elucidated further. In light of the fact, that more
PaleoDA reconstructions are now aiming at transient climate periods with a prior ensemble
which changes through time, a thorough assessment for a climatically stable period as the last
millennium is imperative for understanding the reconstructed spectral characteristics better.

7.4 Model biases, inter-model differences, and the stationary
covariance pattern in offline PaleoDA

The discrepancies in the mean state between the proxy records and the model priors were found
to be of up to two digits (in h) for individual proxy records and thus judged too large for the
EnKF (Figure 5.1). The studies by Bühler et al. (2022) and Heiser et al. (2021), which worked
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on the same proxy record data2 to perform model-data comparison, did not rate the biases as
large because they looked at the global mean of the biases. The difference in judgement comes
from the sensitivity of the EnKF to mean state biases at individual proxy record locations. For
instance, a mean bias of ∼ 10h at one proxy record location would be sufficient to shift the
reconstructed temperature by several degrees in this region. A meaningful reconstruction of
GMT is particularly inhibited if the proxy record with such an offset to the simulated values is
only available for some years of the reconstruction period, which would lead to large artificial
jumps in the reconstructed signal when this record is not available. Neither a particular PSM
configuration (especially the height correction or fractionation), nor a specific model prior or a
multi-model ensemble could avoid at least some large local δ18O biases. The anomaly recon-
struction performed here provides a simple way of dealing with the mean value bias, although
it does introduce the necessity of a time period in which all proxy records have a value. It also
adds additional uncertainty because not all proxy records precisely span the whole reference
period, here chosen to be the 18th century. In the end, the anomaly reconstruction is similar to
the anomaly reconstructions in LMR and PHYDA, which use periods during the 20th century
as the reference period due to how the statistical calibration of the proxy record data is done.
The last millennium is a stable period, in which an anomaly reconstruction is easily justifiable.
For the reconstruction of transient climate, Erb et al. (2022) used a similar approach of recon-
structing anomalies with respect to a reference period. For a single-time fit of the LGM, Annan
et al. (2022) employed a more advanced debiasing technique based on Empirical Orthogonal
Functions to center the model priors on the proxy record data, which could serve as a debiasing
reference in future PaleoDA studies.

Biases in the mean simulated state, which could also reflect a shortcoming of the employed
PSMs, are not the only type of bias which might distort the reconstructions. The employed
models have different covariance structures for the climate variables at the grid cells. The co-
variance bias is more difficult to quantify and visualize than the mean bias. Furthermore, the
proxy record and observational δ18O records from the instrumental period are sparse, which
impedes establishing a target δ18O covariance pattern which the model priors should repro-
duce. Nonetheless, the experiments performed in this thesis illustrate the impacts of differences
in the covariance patterns and the different overall response to measurements of δ18O in the
DA. As an example, the reconstructed GMT curves show, that the iHadCM3 model leads to
larger temperature anomalies than the other model priors (Figure 6.1). This finding is in line
with the global area of the averaging kernel analysis (Figure 5.2), where iHadCM3 exhibited
the strongest temperature response to potential δ18O measurements. The reason for this effect,
which might be connected to the known bias of overestimated local evaporation (Table 3.1)
needs to be elaborated on. Such inter-model differences in the covariance are also apparent
in the reconstructed temperature and precipitation changes over the core monsoon region in
tropical South America (Figure 6.8). For instance, iCESM has a stronger temperature response
than isoGSM, while the opposite is the case for precipitation. This effect is also visible in the
area of the averaging kernel for that region (Figure 5.2). A more precise assessment using proxy
locations only from that region and the covariances on the right time scales is needed to further
substantiate this connection.

To balance out covariance biases of the individual model priors, MMEs were employed. Their
use was motivated by the PPEs performed by Parsons et al. (2021), who calculated that multi-
model ensembles have more spatial degrees of freedom and consequently more spatially diverse
covariance patterns. The reconstructed GMT and monsoon indices suggest that the MME fol-
lows the model prior which reconstructs the strongest variations. At times, the resulting curves
also surpass the reconstructions based on the individual models in amplitude. These counter-

2The mentioned studies did not select exactly the same speleothem and ice core records.
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intuitive results demonstrate that the MME is not straightforward to interpret and not simply
a mid-way between different climate model priors. However, the MME used here only consisted
of 4 models due to the exclusion of GISS, which is rather small in comparison Parsons et al.
(2021) who used 9 different models. Future studies could profit from using more isotope-enabled
climate simulations. They would need to take into account the similarity of climate models from
the same model family to avoid biased covariance structures. Considerations for the appropriate
selection of MME members can be found in the LGM PaleoDA reconstruction by Annan et al.
(2022). Making use of MMEs can now be considered good practice in PaleoDA. MMEs have
been used in the recent ENSO last millennium reconstruction by Sanchez et al. (2021) and the
LGM reconstruction by Annan et al. (2022). However, as in the DAISIM experiments, these
studies did not specifically investigate the benefit of the MME in their reconstructions. At
least, the use of multiple models and MMEs emphasises the importance of assessing how much
a reconstruction depends on a specific prior, thus improving the reliability of the reconstructions.

Besides applying MME to the proxy data, I applied them in PPEs employing different target
and prior models. The MMEs only led to small improvements in comparison to the single model
priors (Figures 5.4 and 5.5). A similar result was also found by Parsons et al. (2021), who used
pseudoproxies of temperature and not δ18O. However, the authors showed, that the MME is
particularly beneficiary for regions that are remote of usual terrestrial proxy record locations,
as the oceans, which is an aspect I have not looked into. The target-prior PPEs are a great
tool to investigate the inter-model differences as such. They can be seen as a simulation of the
bias relationship between climate model priors and the real climate system. The local skill is
remarkably low when not using the same model as prior and target, despite the anomaly recon-
struction, which is unaffected by the mean bias (Figure 5.4 and 5.5). This kind of experiment
could be seen as a testbed for evaluating debiasing schemes. Perhaps, the pseudoproxy records
from the target simulation contain enough information, such that the covariances from the prior
model could be debiased to give better reconstruction skill. A study performing PPEs to study
the effect of various PSMs by Dee et al. (2016) has performed such a bias correction in variance.
However, the method applied there requires that the true distribution in form of the target
model is known entirely and is thus impractical for real proxy data. The authors concluded,
that PaleoDA reconstructions could be more sensitive to model biases than imprecise PSMs.
Making use of five different isotope-enabled models for the assimilation of the speleothem and
ice core proxy records could enable finding a variance debiasing scheme, which improves the
reconstruction skill of the non-target prior models. This scheme could then also be applied
to real data to produce more reliable PaleoDA reconstructions. The GISS simulation showed
a particular bias and proved to be unsuited for the global PaleoDA, due to little similarity
to the reconstructions from other prior (Figure 6.4). An explanation could be the δ18O drift
over Antarctica and how it has been detrended here (Section 3.1). It has not been tested, if
only using the first 300 years of the simulation, which seem to be without the drift, or another
detrending technique leads to more sensible reconstructions. The detrended δ18O values over
Antarctica should only affect observation estimates from that region. Another test could thus
consist of performing reconstructions with all climate model priors without assimilating any
proxy records from Antarctica.

A question closely related to the topic of varying covariance structures in the different models is
if the stationary covariance that is used by the PaleoDA algorithm is always suited. During the
CWP, it can be hypothesised that the covariance structure changes, although this would need to
be tested statistically. At least, it was possible to reproduce the global warming trend with the
covariance structure from the last millennium simulations, which do not incorporate the global
warming of the CWP. However, it is important to keep in mind, that using the same covariance
over the entire last millennium to interpolate the climate fields is only an approximation, which
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might not be appropriate for specific periods and regions. Whereas with DAISIM this possible
caveat has not been studied, a recent reconstruction of ENSO for the last millennium from
corals by Sanchez et al. (2021) found an unexpected covariance bias artefact. For the period
of strong volcanic activity at the beginning of the 19th century, the signal recorded from corals
in different regions of the Pacific could only be reconciled by the PaleoDA reconstruction when
specific simulation years without the teleconnections influenced by ENSO were selected for the
prior. This suggests that selecting specific prior ensemble members instead of taking a random
sample might improve offline EnKF, also for a supposedly stable period as the last millennium.
In a purely technical study with a simple Lorenz model, Sun et al. (2022) propose an analog
offline EnKF that goes into that direction. It preselects its ensemble members for each time
step given an error metric. The technique could be tested with the target-prior model PPEs
from GCM simulations to evaluate if the model priors offer enough choice in variability to ef-
fectively improve the reconstruction. However, this method might not be easily expandable to
the multi-time scale approach implemented for DAISIM.

To summarize this section of the discussion, it can be said that performing PaleoDA experiments
with different isotope-enabled models imply the need for a better understanding of the simulated
δ18O values and their covariance relationship to other variables. Hence, further multi-model
data comparison is necessary.

7.5 Central tasks for future PaleoDA reconstructions

The multi-timescale PaleoDA algorithm presented and applied in this thesis is a versatile method
with many different options. The obtained reconstructions can be tuned by doing sensitivity
tests and cross-validated using external data, for instance, proxy records that are not used on
purpose during the reconstruction. In the first place, this tuning should be avoided. It can
easily lead to circular arguments and it is tempting to aim for reductions in an error metric
without deeper physical and mathematical reasoning. For research following up on this project, I
recommend finding methods to tackle the following four central issues, which have been touched
upon in the discussion and are summarized in the following. Assessing them will also help in
answering the scientific questions that have been raised at the beginning of this thesis better.

1. Realistic uncertainty assessment. The δ18O observation error associated with each
proxy record should be constrained realistically by calibrating it to the employed PSM and
the associated time scale. The proxy error should also reflect the SNR that is estimated
for a proxy record type. This task is especially relevant when the δ18O proxy records
incorporated for DAISIM will be assimilated alongside more proxy data with different PSM
types. In addition, the uncertainties provided by the prior ensembles, ideally provided by
an ensemble of climate models should be examined. In sum, the reconstructed climate
estimates should be understood better in terms of uncertainties and thus become more
reliable.

2. Time scales and dating uncertainty. In the multi-time scale approach, each proxy
record needs to be attributed a time scale over which it is assumed to represent a mean
value. This should be done in a physically sound way and not be based only on the
provided record resolution. Furthermore, it needs to be justified if proxy records are to
be reused on multiple time scales and if dating uncertainty of proxy records needs to be
considered separately.

3. Quantifying the covariance structure and the influence of observations. While
visualizing the Kalman gain for each proxy record at each reconstruction time scale of the
reconstruction is not practical, some metric summarizing the effect of the observations,
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for instance from specific archive types, regions or time scales could improve the under-
standing of how the PaleoDA method reconstructs climate fields. This type of assessment
is also necessary for evaluating to what extent the simulated δ18O needs to be modified
by a PSM to reproduce realistic spatial covariance relationships for speleothem and ice
core records.

4. Debiasing the model prior. Establishing a method for centering the model prior(s) on
the proxy record data in a commensurate way is required to reduce the influence of model
biases on the reconstruction, not only for the mean state but also for the static covariance
structure used by the offline PaleoDA algorithm.



Chapter 8

Conclusion

Offline PaleoDA has been used with data from isotope-enabled climate models and speleothem
and ice core proxy records to reconstruct global climate fields for the last millennium. This
combination of δ18O proxy and model data had not been assimilated with PaleoDA before.
To that end, I flexibilized the existing annual PaleoDA algorithm introduced by Hakim et al.
(2016) for the incorporation of proxy records on multiple time scales by adapting the method
proposed by Steiger and Hakim (2016). After testing different mathematical solutions of the
EnKF, the PaleoDA algorithm has been implemented in an optimized way, such that climate
fields can be reconstructed with limited computational resources. The EnKF makes use of the
covariance between simulated δ18O and simulated variables as temperature and precipitation
in order spread information provided by the δ18O proxy records to the grid cells of the climate
fields. To render simulated and recorded δ18O comparable, PSMs for speleothems and ice cores
have been implemented and tested. Due to large differences in the mean states of proxy and
model data, climate anomalies instead of absolute values have been reconstructed, which limits
the importance of the PSMs to the covariance relationship.
The developed framework has been applied to speleothem δ18O from the SISALv2 database and
ice core δ18O from the Iso2k database, yielding climate signals which are comparable to existing
reconstructions. On the global scale, the influence of speleothem records remained inconclu-
sive. The regional reconstruction of temperature and precipitation over tropical South America
demonstrated the utility of speleothems. The results indicate strong changes in hydroclimate in
the region during the last millennium which are not present in other reconstructions, but have
been suggested by proxy record studies. The multi-timescale reconstruction of GMT shows an
increased decadal to centennial variability in comparison to existing, single-time scale PaleoDA.
Pseudoproxy experiments suggest that assimilating proxy records on longer than annual time
scales improves the representation of this long-term variability. PaleoDA reconstructions using
more proxy records will enable an investigation of local climate variability to compare it to the
variability simulated by climate models.
The multi-timescale PaleoDA algorithm offers many configuration options. Future research will
need to evaluate the sensitivity to uncertainties in the proxy records, PSMs, climate models,
and their inherent biases to produce more reliable statistical estimates of past climate changes.
PaleoDA is not a black box but a method with clear mechanisms, which can be difficult to follow
due to the temporal and spatial sparsity of available proxy records. Developing standards for
the assessment of PaleoDA reconstructions will improve understanding of how the reconstructed
climate signal, its uncertainty, and variability depend on model priors and proxy data. PaleoDA
is a promising method in the field of paleoclimatology. It enables the reconstruction of full
climate fields for all climate variables which are provided by a model simulation and thus
enhances the interpretation of proxy record signals. Its deployment for a wide range of climatic
periods is already in full swing and the importance of better understanding and constraining
the limitations of PaleoDA can thus hardly be overestimated.
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Appendix A

Detailed flowchart of the PaleoDA code

   Loop over subblocks 
 - compute interannual mean 
 - select available proxy values and HXf entries 
 - assimilate mean 
 - update prior subblock mean

      Loop blockwise over time (step = max. timescale) 

Monte Carlo repetition loop for experiment      
- Select random prior members (model years) for ensemble creation 
- create prior block out of consecutive simulation years given largest timescale
- optional: select a fraction of proxies to be assimilated

Config dictionary 

 contains all the experiment
 specific metadata:
  - file paths for models and 
 Proxy DBs 
 - variables to assimilate 
 - ensemble size, repetions
 - timescales and resampling 
 - PSM options
 - PPE options
 - evaluation metrics
 - ...

 keep average posterior ensemble mean and standard deviation

Algorithm sketch for Paleoclimate
Data Assimilation (full)

Resample proxies to target resolution(s)
- upsample by interpolating
- downsample
- low pass filter
- mask gaps without real data
- optional: reuse on multiple timescales

Proxy data

- load proxy data in tabular form (time,site) for each DB
- non existing time-site entry marked with nan
- load proxy error (eventually replaced)
- compute time resolution

Model data (prior)

- load monthly data for all relevant variables
- compute annual or seasonal mean

    Proxy estimates from model 
- apply Proxy system model to prior data 
- 'speleo','icecore','statistical' 
- use specified PSM options

Generate pseudoproxies

- optional: pseudoproxies from other model
- use PSM specification
- resample to timescales
- SNR, noise type

Bring prior into vector form

- append proxy estimates
- optional: add global/regional  means

Save reconstructed fields and variables as .nc file

Evaluation metrics for PPEs

     Loop over time resolutions 

Figure A.1: Algorithm sketch for PaleoDA code developed for this thesis (see 4.1 for the simplified version).
Dashed boxes indicate optional steps dependent of the configuration and the dashed arrow indicates the input
of proxy metadata for the PSM. The reconstruction can be comprehensively configured with a configuration
dictionary. Practical examples and detailed descriptions of all options can be found in the public repository
https://github.com/mchoblet/paleoda.
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Appendix B

Additional figures

B.1 GISS drift (Section 3.1)

STD of annual 18O

1 2 3 4

Figure B.1: Standard deviation of the annual mean δ18O from the GISS last millennium sim-
ulation (see Table 3.1). The extreme values in the west and the east of Antarctica, and the
eastern coast of Greenland indicate a model artefact.
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Figure B.2: Visualization of the δ18O drift in the GISS last millennium simulation. The left
axis refers to the green curve, which is the mean δ18O for all grid cells south of 60◦S (range -25
to -18 h). The right axis refers to the blue and orange curves, which represent the global mean
and the mean of all grid cells above 60◦S (range -7.8 to - 6.4 h).

B.2 Model data comparison (Section 5.1)

Speleothem records Ice core records

20 15 10 5 0
18O [ ]

60 45 30 15 0
18O [ ]

Figure B.3: Median δ18O value of the selected proxy records from SISALv2 (left panel,
speleothem records) and Iso2k (right panel, ice core records) for the period 850-1850CE.
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Figure B.4: Comparison of the median PSM converted δ18O values from the climate models to
the proxy record medians for the SISALv2 records (850-1850CE). In the left column, the model
bias is indicated by color for the individual records and in the right column the simulated
medians are plotted against the proxy record medians. The colour in the dots indicates the
height difference of the respective model grid cell to the elevation of the proxy record locations.
The colored lines indicate the correlation and the 95% confidence interval.
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Figure B.5: Difference of PSM converted simulated δ18O values to the ice core records, as in
Figure B.4.
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B.3 Area of the averaging kernel (Section 5.2)
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Figure B.6: Area of the averaging kernel (Kalman gain summed up for each grid cell) using the
annual δ18O at the selected SISALv2 speleothem locations and assuming a proxy error variance
of 0.5h2. The proxy record locations are indicated by grey x-markers. The global mean value
is written in the box in the lower right corner.
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Figure B.7: As Figure B.6 for δ18O at the selected Iso2k ice core locations.
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B.4 Pseudoproxy experiments (Section 5.3)
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Figure B.8: Skill scores of Pseudoproxy experiments for reconstructing the climatic fields of the
iCESM simulation from the simulated δ18O at the speleothem locations. The global mean of
the skill metrics is annotated in the upper right corner. The pseudoproxies are created with
a SNR of 0.5, which is applied to the simulated δ18O time series before further modifications
by the PSMs. In a), the annual mean δ18O at the proxy record locations is used for the
pseudoproxies. In b), the pseudoproxies are altered by infiltration weighting and fractionation
for the speleothem pseudoproxies. In c), the pseudoproxies from b) are additionally modified
by the karst filter.
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Figure B.9: As Figure B.8 for the selected Iso2k ice core records. In b) the δ18O from the
ice core record locations is modified by precipitation weighting and in c) the signal is further
modified by firn diffusion and compaction for the ice cores.
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B.5 Correlation analysis including the confidence intervals (Sec-
tion 6.1)
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Figure B.10: Heat map visualizing the correlation between the time series in Figure 6.1 and 6.2.
The upper value in each cell is the correlation coefficient, and the two lower values indicate its
95% confidence interval. The correlations are computed separately for the PI (left panel) and
the CWP (right panel). The time series have not been detrended to assess similarity including
the cooling and warming trends. No filtering of the signals has been performed. The CWP
evaluation also includes the correlation with the observational global mean temperature from
the Berkeley Earth dataset (BE). mme sisal and mme iso refer to the multi-model ensemble
reconstructions with the separate SISALv2 and Iso2k database records.
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Figure B.11: Correlation heat map for global mean precipitation during the period 800-1850CE
(Figure 6.7). The upper value in each cell is the correlation coefficient, and the two lower values
indicate its 95% confidence interval.
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B.6 Centennial mean anomalies for tropical South America from
LMR (Section 6.2)
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Figure B.12: Centennial mean precipitation anomaly fields for tropical South America from the
6th to the 20th century in the Last Millennium Reanalysis (Hakim et al., 2016).
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Figure B.13: Centennial mean temperature anomaly fields for tropical South America from the
6th to the 20th century in the Last Millennium Reanalysis (Hakim et al., 2016).



Appendix C

Matrix calculations fact sheet

This appendix section briefly reviews basic matrix calculation concepts (without proofs) which
are used for the derivations of the Ensemble Kalman Filter formulas. This is only a small
subset of many fascinating matrix decompositions and theorems. For the reader interested
to learn more about Linear Algebra and its matrix representation, I recommend textbooks
as Strang (2006) and Strang (2007). The respective lecture recordings are available via MIT
OpenCourseWare. These resources also served as the primary source for this fact sheet.

Matrix definition
An n×m matrix A is a rectangular array which consists of n rows and m columns, in case its
entries are real values it can be written as A εRn×m.

A matrix can be written in form of its entries as

A = (aij) (C.1)

where i ε 1, . . . , n denotes the rows and j ε 1, . . . ,m the columns. It is called a square matrix if
n = m.

The addition and subtraction of matrices is associative and commutative, whereas the multi-
plication of matrices is associative and distributive, but not commutative.

A matrix is called diagonal if it only has nonzero entries on its entries. A lower/upper trian-
gular matrix only contains nonzero values in the part below/above its diagonal (including the
diagonal).

Transpose of a matrix
The transpose of a matrix A is obtained by inverting its rows and columns:

AT = (aij)
T = (aji) (C.2)

where i ε 1, . . . , n and j ε 1, . . . ,m. The transpose of a product of matrices (AB)T is BTAT .

Symmetric matrices
A matrix S is symmetric if

S = ST . (C.3)

The product of any matrix A with its transpose, AAT is a symmetric matrix. Symmetric
matrices are positive semidefinite.
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Inverse of a matrix
The inverse of a matrix A εRn×m is denoted by the superscript -1. A−1 is the matrix which
multiplied with A results in the identity matrix I, a diagonal matrix which only consists of
ones.

AA−1 = I (C.4)

The inverse of a matrix is unique. In case A is not a square matrix one must distinguish between
the left and right inverse of a matrix, else it is the same matrix.
Matrices which have such an inverse and are thus invertible are also called non singular, whereas
noninvertible matrices are called singular.
The inverse of a product of matrices (AB)−1 is (B−1A−1).
A matrix is called orthogonal if its inverse is equal to its transpose: A−1 = AT .

Facts about a non singular n× n matrix A

1. The rows and columns of A are independent, meaning that they cannot be obtained from
one another through linear combinations (the matrix is said to have full rank).

2. The determinant of A is not zero.

3. All eigenvalues of A are nonzero.

4. ATA is symmetric and strictly positive definite.

5. A has n positive singular values.

Sherman-Morrison-Woodbury Formula
This matrix identity states that for matrices A εRn×n, U εRn×k,V εRk×n and C εRk×k the
following equality holds

(A + UCVT )−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1. (C.5)

Eigenvalues and vectors
A has the nonzero eigenvector x with the corresponding scalar eigenvalue λ if

Ax = λx. (C.6)

AT has the same eigenvectors and eigenvalues as A.

Eigenvalue decomposition (EVD)
A square matrix A εRn×n which has n linearly independent eigenvectors can be de decomposed
into its eigenvector matrix S (the columns are eigenvectors of A) and its eigenvalue matrix Λ,
which is a diagonal matrix with the Eigenvalues as its entries.

A = SΛS−1 (C.7)

When A is a symmetric matrix, its eigenvectors and hence S are orthogonal. EVD can be used
for instance for finding the inverse of a matrix, because it has the same eigenvectors and the
inverse eigenvalues.

A−1 = SΛ−1S−1 (C.8)
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Positive (semi) definite matrices
A matrix AεRn×n is said to be positive semidefinite if

xAxT ≥ 0 for all x εRn×1\{0} (C.9)

All its eigenvalues are non negative (C.10)

Both definitions are equivalent and hence only one of both is required to be shown for positive
semidefiniteness of a matrix. A matrix is said to be positive definite if the inequality is strictly
non-negative and all eigenvalues are positive.

Singular Value Decomposition (SVD)
Any real matrix A εRm×n can be decomposed into a set of of orthogonal and diagonal matrices.

A = UΣVT (C.11)

where UεRm×n and VεRn×n are orthogonal matrices and ΣεRn×n is a diagonal matrix which
contains the singular values σi of A. The squared eigenvalues are the Eigenvalues of the matrix
ATA.

Matrix square roots
The matrix square root X of A is a matrix that fulfils

XXT = A. (C.12)

Cholesky factorisation
Any symmetric and positive definite matrix can be decomposed into the product of a lower
triangular matrix C with its transpose, which is an upper triangular matrix.

A = CCT (C.13)



Appendix D

Derivation of the Kalman Filter

D.1 Derivation of the optimal Kalman gain (Equation 2.16)

The proof can be performed straightforwardly from Bayes’ theorem using multivariate normal
distributions. However, it involves a lot of notational overhead. I therefore follow a different,
yet mathematically equivalent approach which is presented in Brown and Hwang (2012). The
derivation as used here also gives more intuition for other calculations performed in this thesis.

I start by showing the expression for the posterior error covariance P in Equation 2.18 starting
from its basic definition and using Equation 2.15 for the posterior state estimate. The final goal
is to find the expression for K that minimizes P.

P = E[(x− x̂)(x− x̂)T ] (D.1)

= E[(x− xf −K(y −Hxf ))(x− xf −K(y −Hxf ))T ] (D.2)

= E[((x− xf −K(Hx + v −Hxf ))(x− xf −K(Hx + v −Hxf ))T ] (D.3)

= E[[(I−KH)(x− xf )−Kv][(I−KH)(x− xf )−Kv]T ] (D.4)

= E[[(I−KH)(x− xf )(x− xf )T (I−KH)T − (I−KH)(x− xf )KTvT (D.5)

−Kv(x− xf )T (I−KH)T + Kv(v)TKT ] (D.6)

(D.7)

This equation can be simplified using the fact that K and H are constant matrices and can
thus be pulled out of the expected value operator. Furthermore, the observation error v and
the estimation error x− xf are uncorrelated, such that E[(x− xf )vT )] = 0. We use the linear
properties of the expected value to split the equation into parts and use the definitions of P
and R.

P = (I−KH)E[[(x− xf )(x− xf )T ](I−KH)T − (I−KH)E[(x− xf )vT ]KT (D.8)

−KE[v(x− xf )T ](I−KH)T + KE[vvT ]KT (D.9)

= (I−KH)Pf (I−KH)T + KRKT (D.10)

The next step consists of finding the specific solution for K that minimizes P which can be
done by factoring the equation into the parts which are linear and quadratic in K.

P = Pf −KHP−Pf (KH)T + KHPf (KH)T + KRKT (D.11)

= Pf −KHP−Pf (KH)T + K(HPfHT + R)KT (D.12)
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The term in brackets, which is quadratic in K is a sum of symmetric matrices. Knowing that this
term is positive definite1, we can use the fact that a Cholesky decomposition with a triangular
matrix S exists such that the term can be written as

SST := HPfHT + R (D.13)

S will not be calculated explicitly, we only need to know that this kind of matrix exists.

Hence, we can write the equation for P in a quadratic form using a matrix A, which we need
to find to find the Kalman gain K.

P = Pf + (KS−A)(KS−A)T −AAT = Pf + KSAT −ASTKT + KSSTK (D.14)

Comparing the last equation to Equation D.12, we see that

KSAT + ASTKT = KHPf + PfHT . (D.15)

This is fulfilled if

A = PfHT (ST )−1 (D.16)

and

AT = S−1H(Pf )T . (D.17)

As for minimizing Equation D.14 it is required that KS = A, we finally get the desired expres-
sion for the Kalman gain K.

K = AS−1 = PfH(ST )−1S−1 = PfH(SST )−1 = PfH(HPfHT + R)−1 (D.18)

D.2 Proof of corollary to the Kalman Filter theorem (Equation
2.18)

To show the alternative formulation of the posterior error covariance, we start from equation
D.12 and plug in the optimal Kalman gain (Equation 2.16).

P = Pf −KHP−Pf (KH)T + KHPf (KH)T + KRKT (D.19)

= Pf −KHPf −PfHTKT + K(HPfHT + R)KT (D.20)

= Pf −KHPf −PfHTKT + PfHT (HPfHT + R)−1(HPfHT + R)KT (D.21)

= Pf −KHPf −PfHTKT + PfHTKT (D.22)

= (I−KH)Pf (D.23)

D.3 Proof of the alternative Kalman Filter formulation (Equa-
tion 2.23)

We can show that (Pf )−1 + HTR−1H is the inverse of P by multiplying both expressions. For
reasons of clarity we introduce the definition A := (HPfHT + R)

1Covariance matrices are by definition positive semi definite. For using Cholesky decomposition we need to
assume strict positive definiteness. In a real world scenario, an eigenvalue of exactly zero is practically excluded
and hence this is a good assumption. The covariance matrices could also be tailored to be positive definite.
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P−1P = ((Pf )−1 + HTR−1H)(I−KH)Pf (D.24)

= ((Pf )−1 + HTR−1H)(Pf −PfHT (HPfHT + R)−1HPf ) (D.25)

= ((Pf )−1 + HTR−1H)(Pf −PfHTA−1H)Pf (D.26)

= I−HTA−1HPf + HTR−1HPf −HTR−1HPfHTA−1HPf (D.27)

= I + HT [−A−1 + R−1 −R−1HPfHTA−1]HPf (D.28)

= I + HT [−I + R−1A−R−1HPfHT ]A−1HPf (D.29)

= I + HT [−I + R−1(HPfHT + R)−R−1HPfHT ]A−1HPf (D.30)

= I + HT [−I + I]A−1HPf (D.31)

= I + HT [0]A−1HPf (D.32)

= I (D.33)

The alternative formulation of the Kalman gain is derived from the initial formula for K (Equa-
tion 2.16) by inserting PP−1 = I and RR−1 = I and using the equation for the inverse of
P.

K = PfHT (HPfHT + R)−1 (D.34)

= PP−1PfHR−1R(HPfHT + R)−1 (D.35)

= P(Pf−1
+ HTR−1H)PfHR−1(HPfHTR−1 + RR−1)−1 (D.36)

= P(I + HTR−1HPf )HR−1(HPfHTR−1 + I)−1 (D.37)

= P(HTR−1HTR−1−1
+ HTR−1HPf )HR−1(HPfHTR−1 + I)−1 (D.38)

= PHTR−1(I + HPfHR−1)(I + HPfHTR−1)−1 (D.39)

= PHTR−1 (D.40)

(D.41)



Appendix E

Equivalence of the serial Kalman
Filter

Proof

The serial Kalman Filter (Section 2.3) is mentioned in classic textbooks as Maybeck (2022) and
Brown and Hwang (2012), but only intuitive arguments are provided for proving the equality
to the original Kalman Filter. To the best of my knowledge, a rigorous proof can only be found
in the recent publication by Kettner and Paolone (2017), whose steps I elaborate on1. We
start by showing the equality of the posterior error covariance matrix P using its inverse2. We
assume that the measurement error covariance R is a diagonal matrix, where each entry j is
the observation variance corresponding to measurement j:

R =

R1

. . .

Rn


If the inverses are equal then also the matrices as such are equal3, thus it needs to be shown
that

P−1 = P−1
n = P−1

n−1 + HT
nR−1

n Hn. (E.1)

This is done by writing R and H as block matrices, which is simple due to the diagonality of
R. Recall, that the observation operator H is an Ny × Nx matrix, and hence each row Hj

corresponds to one measurement, in HT each column.

P−1 = (Pf )−1 + HTR−1H (E.2)

= (Pf )−1 +
(

H1
T . . . Hn

T
) R−1

1
. . .

R−1
n


 H1

. . .

Hn

 (E.3)

= (Pf )−1 + H1
TR−1

1 H1 + · · ·+ Hn
TR−1

n Hn (E.4)

(E.5)

1The fact that this is a publication about optimizing electrical grids is yet another demonstration of the
versatility of the Kalman Filter.

2As in the derivations before, we assume the covariance matrices all to be strictly positive definite which is a
necessary and sufficient condition for the inverse to exist.

3By inverse we mean both right and left inverse, as these are equal for square matrices.
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As the prior covariance (Pf )−1 is by definition equal to P0 in the serial Kalman Filter, we
recognise the recursive definition of P−1

n .

P−1 = P0
−1 + HT

1 R−1
1 H1 + · · ·+ HT

nR−1
n Hn (E.6)

= P−1
1 + HT

2 R−1
2 H2 + · · ·+ HT

nR−1
n Hn (E.7)

= P−1
n−1 + HT

nR−1
n Hn (E.8)

The second part of the proof consists of showing that the posterior state vectors are equal,
which means that

x = xn (E.9)

x̂f + K(y −Hx̂f ) = x̂fn−1 + Kn(yn −Hnx̂
f
n−1). (E.10)

We start by rewriting the last equation as

Ky + (I−KH)x̂f = Knyn + (I−KnHn)x̂n−1 (E.11)

(E.12)

and explicitly state the recursion on the right hand side to bring into into the form of sums and
products.

= Knyn + (I−KnHn)xn−1 (E.13)

= Kny + (I−KnHn)Kn−1yn−1 + (I−KnHn)(I−Kn−1Hn−1)xn−2 (E.14)

= Knyn + (I−KnHn)Kn−1yn−1 + (I−KnHn)(I−Kn−1Hn−1)Kn−2yn−2 (E.15)

+ (I−KnHn)(I −Kn−1Hn−1)(I−Kn−2Hn−2)Xn−3 + . . . (E.16)

= Knyn +
n−1∑
i=1

n∏
j=i+1

(I−KjHj)Kiyi +
n∏
i=1

(I−KiHi)x0 (E.17)

Recalling the equality of the prior state vector, x0 = xf , and comparing this to Equation E.12,
we recognise similar terms whose equality can be shown.

(I−KH)xf =
n∏
i=1

(I−KiHi)x
f (E.18)

and

Ky = Knyn +
n−1∑
i=1

n∏
j=i+1

(I−KjHj)Kiyi

The first equality follows straight from the equality of P and Pn that we have shown previously,
because Pn then can also be written in a recursive way.

P = (I−KH)Pf = Pn = (I−KnHn)Pn−1

=

n∏
i=1

(I−KiHi)P0

=

n∏
i=1

(I−KiHi)Pf

⇒ (I−KH) =

n∏
i=1

(I−KiHi)

(I−KH)xf =

n∏
i=1

(I−KiHi)x
f
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For showing the second equality, we first rewrite the product term in terms of prior error
covariances by introducing them as an identity matrix into the equation. One recognises the
recursive formulation of P and that most terms actually vanish.

n∏
j=i+1

(I−KjHj) =

n∏
j=i+1

(I−KjHj)Pj−1P
−1
j−1 (E.19)

=

n∏
j=i+1

PjP
−1
j−1 (E.20)

= PnP
−1
i (E.21)

This relationship and the alternative formulation of the Kalman Gain from Equation 2.23,
Ki = PiHi

TR−1
i , are then used to get closer to the desired formulation.

Knyn +

n−1∑
i=1

n∏
j=i+1

(I−KjHj)Kiyi (E.22)

= Knyn +
n−1∑
i=1

PnP
−1
i Kiyi (E.23)

= Knyn + Pn

n−1∑
i=1

P−1
i Kiyi (E.24)

= Knyn + Pn

n−1∑
i=1

P−1
i PiHi

TR−1
i yi (E.25)

= PnHn
TR−1

n yn + Pn

n−1∑
i=1

Hi
TR−1

i yi (E.26)

= Pn

n∑
i=1

Hi
TR−1

i yi (E.27)

Again, we can use the fact that R is diagonal and that Hi corresponds to one row of H, such
that the last equation can be written in terms of the full matrices of the nonserial formulation.

= PnH
TR−1y (E.28)

= PHTR−1y (E.29)

= Ky (E.30)



Appendix F

Derivations of the Ensemble Square
Root Kalman Filter formulations

In the following the steps required for deriving the different solutions of the square root formu-
lation of the Ensemble Kalman Filter (Section 2.4.2 and Table 2.1) are performed. The notation
follows Vetra-Carvalho et al. (2018) who present the different solutions without elaborating on
the precise steps for obtaining them.

F.1 Ensemble Transform Kalman Filter (ETKF)

This method was introduced in Bishop et al. (2001) and is called the Ensemble Transform
Kalman Filter, because the estimates of observations from the model are transformed into the
so called error space. This is done by TTT in Equation 2.46 using the Sherman-Morrison-
Woodbury formula. This simplifies the calculation of inverses (for instance of F−1), To bring
the original term for TTT into the right form, identity matrices of the according shape are
inserted into the equation.

TTT = (I− STF−1S) (F.1)

= I− IST (Ne − 1)R + SIST (F.2)

= I− IST ((Ne − 1)R + SIST )SI (F.3)

The Sherman-Morrison-Woodbury formula states that for matrices A εRn×n, U εRn×k,V εRk×n

and C εRk×k the following equality holds

(A + UCVT )−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1 (F.4)

Recognising A−1 = I, C = (Ne − 1)R, V = S and U = ST we rewrite the equation as

TTT =

[
I− STR−1S

Ne − 1

]−1

(F.5)

(F.6)

We have used that the inverse of the identity is the identity itself. This new formulation of TTT

is the starting point of the ETKF. The next step consists of doing an eigenvalue decomposition of
the inverse of the this term. As (TTT )−1 is by construction a symmetric matrix, the Eigenvector
matrix U is orthogonal. The Eigenvalue matrix Σ is by definition a diagonal matrix. Hence, we
can directly get the matrix square root T from the square root of the Eigenvalues. Regaining
the term TTT without the inverse becomes simple as it reduces to inverting the Eigenvalue
matrix Σ.
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(TTT )−1 = UΣUT (F.7)

⇒ TTT = (UT )−1Σ−1U−1 (F.8)

= UΣ−1UT (F.9)

= UΣ−
1
2 Σ−

1
2 UT (F.10)

= UΣ−
1
2 UTUΣ−

1
2 UT (F.11)

= UΣ−
1
2 UT (UΣ−

1
2 UT )T (F.12)

⇒ T = UΣ−
1
2 UT (F.13)

(F.14)

For this method, the matrix T is directly the perturbation weight matrix W′ (Equation 2.48).
We get the mean weight vector w (Equation 2.48) from the alternative Kalman gain notation
(Equation 2.23) using the ensemble formulation and the decomposition from above.

K = PHTR−1 (F.15)

=
1

Ne − 1
X′

f
TTT (X′

f
)THTR−1 (F.16)

= X′
f 1

Ne − 1
UΣ−1UTSTR−1 (F.17)

Therefore, taking into account the innovation d = (y −HXf ) we get for w in Equation 2.48

w =
1

Ne − 1
UΣ−1UTSTR−1d (F.18)

Alternative formulation
Computing STR−1S can be prone to rounding errors, which is why an alternative formulation

has been proposed by Dance et al. (2007).
It starts from the same equation as the ETKF

TTT =

(
I− STR−1S

Ne − 1

)−1

(F.19)

(F.20)

The matrix S is redefined to S̃.

S̃ =
1√

Ne − 1
R−

1
2 S (F.21)

.
Performing a singular value decomposition of S̃T , the matrix square root T is obtained.

S̃T = UΣ̃ṼT (F.22)

⇒ TTT = (I + UΣ̃ṼT (UΣ̃ṼT )T ) (F.23)

= (UUT + UΣ̃ṼTVΣ̃ŨT ) (F.24)

where U and V are unitary and hence also orthogonal matrices. This simplifies to
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TTT = U(I + ΣΣT )UT (F.25)

= U(I + ΣΣT )−
1
2 UTU(I + ΣΣT )−

1
2 UT (F.26)

⇒ T = U(I + ΣΣT )−
1
2 UT (F.27)

which is equal to the weight matrix W′ (Equation 2.48).

Following steps similar as for the regular ETKF, we get

K = PHTR−1 (F.28)

=
1

Ne − 1
X′TTTX′THTR−1 (F.29)

= X ′
1√

Ne − 1
U(I + ΣΣT )UT STR−

1
2

√
Ne − 1

R−
1
2 (F.30)

= X ′
1√

Ne − 1
U(I + ΣΣT )UT S̃TR−

1
2 (F.31)

= X′
1√

Ne − 1
U(I + ΣΣT )UTUΣ̃ṼTR−

1
2 (F.32)

= X′
1√

Ne − 1
U(I + ΣΣT )Σ̃ṼTR−

1
2 , (F.33)

such that the mean weigh vector (Equation 2.48) is

w =
1√

Ne − 1
U(I + ΣΣT )Σ̃ṼTR−

1
2 d. (F.34)

F.2 Ensemble Square Root Kalman Filter (ENSRF)

The decomposition presented here follows the reformulation of Vetra-Carvalho et al. (2018).

Starting from

TTT = (I− STF−1ST ) (F.35)

the inverse of the matrix F is formulated in terms of an EVD. As F is a symmetric matrix, the
Eigenvector matrix is an orthogonal matrix.

F−1 = UΛ−1UT (F.36)

= UΛ−
1
2 Λ−

1
2 UT (F.37)

Thus,

TTT = X′f (I− STUΛ−
1
2 Λ−

1
2 UTS)X′f

T
(F.38)

TTT = X′f (I−GGT )X′f
T

(F.39)

where we have introduced the matrix G = STUΛ−
1
2 . Next G is reformulated in terms of a

SVD, the index s denotes that these are the unitary matrices stemming from the SVD, not the
EVD.



F. Derivations of the Ensemble Square Root Kalman Filter formulations 125

G = UsΣsV
T
s (F.40)

⇒ TTT = X′f (I−UsΣsV
T
s (UsΣsV

T
s )T )X′f (F.41)

= X′f (UsU
T
s −UsΣsΣ

T
s UT

s )X′f (F.42)

= X′fUs(I−ΣsΣ
T
s )UT

s X′f (F.43)

= X′fUs(I−ΣsΣ
T
s )

1
2 UsU

T
s (I−ΣsΣ

T
s )

1
2 UT

s X′f (F.44)

(F.45)

As the matrix ΣsΣ
T
s only has values on the diagonal (the squared singular values) computing

the matrix square root just consists of computing the square root of the scalars on the diagonal.
One finally gets the following formulation of the perturbation weight matrix (Equation 2.48)

W′ = Us(I−ΣsΣ
T
s )UT

s (F.46)

Note, that the right hand UT
s is a possible, but not necessary addition, which is usually done

for reasons of numerical stability (Dance et al., 2007).
For updating the means we get the weight vector (Equation 2.48) from the original Kalman
gain equation by using the decomposition of the term in brackets which as performed above
(Equation F.37, called F there).

Kd = PfHT (HPfH + R)−1 (F.47)

= X′
f
(HX′)TF−1d (F.48)

= X′
f
(HX′)TUΛ−1UTd (F.49)

⇒ w = (HX′)
T
UΛ−1UTd (F.50)

F.3 Kalman gain formulation of the ENSRF

It needs to be proven that

K̃ = PfHT [

√
(HPfHT + R)

−1

]

T

[

√
(HPfHT + R) +

√
R]−1 (F.51)

is a solution of the posterior error covariance error

P = (I− K̃H)Pf (I− K̃H)T . (F.52)

For proofing this relationship, the authors Whitaker and Hamill (2002) refer to Andrews (1968),
who formulated the original Kalman Filter covariance equations using square roots.
I follow the proof by Andrews (1968) and show how it is connected to the definition of K̃ by
Whitaker and Hamill (2002), which requires some additional steps and a unified notation to be
evident.
Andrews (1968) states that the posterior perturbation can be written as

X′ =
X′f√
Ne − 1

[
I− X′f√

Ne − 1
H(

√
R +

HX′f (X′f )THT

Ne − 1

T−1[
(

√
R + H

X′f (X′f )T

Ne − 1
HT

T

+
√

R)
]−1 (X′fH)√

Ne − 1

T]
.

(F.53)
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Using the definiton of K̃ by this equation becomes

X′ = X′f − K̃HTX′f
T
. (F.54)

Assuming that K̃ is correct, we can show that by multiplying this equation with its transpose
X′T we gain the posterior error covariance formula.

X′X′
T

= (X′f − K̃HTX′f
T

)(X′f − K̃HTX′f
T

)T (F.55)

= (I− K̃H)X′fX′f
T

(I− K̃THT ) (F.56)

⇒ P = (I− K̃H)Pf (I− (K̃H)T ) (F.57)

Still, the correctness of K̃ needs to be shown.

In order to proof it we first simplify the equations by defining the following quantities

Z :=
X′fH

Ne − 1
(F.58)

U :=

√
R +

HX′f (X′f )THT

Ne − 1
=
√

R + ZZT (F.59)

V :=
√

R (F.60)

Equation F.53 becomes

X′ = X′f [I− ZUT−1
[U + V)]−1ZT (F.61)

which is shown in the following algebraic exercise

XXT = X′f [I− ZUT−1
[U + V]−1ZT ][X′f [I− ZUT−1

[U + V)]−1ZT ]T (F.62)

, = X′f [I− ZUT−1
(U + V)−1ZT + ZUT−1

(U + V)−1ZTZ(U + V)−1TU−1ZT (F.63)

,− Z(U + V)−1TU−1ZT ]X′f
T
. (F.64)

For means of keeping the equations simple we temporarily introduce the definition

A := UT−1
(U + V)−1 (F.65)

AT = (U + V)−1TU−1 (F.66)

in the equation above:

XXT = X′f [I− ZAZT + ZAZTZATZT − ZATZT ] (F.67)

= X′f [I− ZAAT−1
ATZT + ZAZTZATZT − ZAA−1ATZT ] (F.68)

= X′f [I− ZA(AT−1 − ZTZ + A−1)ATZT ] (F.69)

(F.70)

We rewrite the final equation in original terms and use that UUT = R + ZZT = VVT + ZZT

to get the desired result.
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= X′f [I− ZA(U(U + V)T − ZTZ + (U + V)UT )ATZT ]X′f
T

(F.71)

= X′f [I− ZA(UUT + UVT − ZTZ + UUT + VUT )ATZT ]X′f
T

(F.72)

= X′f [I− ZA(UUT + UVT − ZTZ + VVT + ZZT + VUT )ATZT ]X′f
T

(F.73)

= X′f [I− ZA(UUT + UVT + VVT + VUT )ATZT ]X′f
T

(F.74)

= X′f [I− ZA((U + V)(U + V)T )ATZT ]X′f
T

(F.75)

= X′f [I− ZUT−1
(U + V)−1(U + V)(U + V)T (U + V)−1TU−1ZT ]X′f

T
(F.76)

= X′f [I− ZUT−1
U−1ZT ]X′f

T
(F.77)

= X′fX′f
T −X′f

X′fH

Ne − 1
(UUT )−1 HX′f

T
X′f

Ne − 1
(F.78)

= Pf −PfH(HPfHT + R)−1HPf (F.79)

= (I−KH)Pf (F.80)

F.4 Serial ENSRF

Houtekamer and Mitchell (2001) used the explicit formulation of K̃ in the previous section
because of it’s ease of implementation when treating observation serially. We have shown in
Section 2.3 that treating the observations serially gives equivalent results to the original Kalman
Filter, and this results also applies for the Ensemble Kalman Filter.

The matrix square roots and inverses in the mean and perturbation Kalman gain then simply
reduce to scalars because R and HPH reduce to single values.

Besides efficiency gains which are discussed in Section 2.5 , the authors also used this formulation
because it simplifies the application of the covariance localization, a topic that is explained in
Section 4.4.2.

F.5 Ensemble Subspace transform Kalman Filter (ESTKF)

The last Ensemble square root Kalman Filter discussed in this thesis is the Error Subspace
transform Kalman Filter, which is a mixture of the ETKF described previously and another
Ensemble Kalman Filter not discussed here, the Singular evolutive interpolated Kalman filter
(SEIK)(Tuan Pham et al., 1998) which was not tested in this thesis.

The ESTKF has been introduced by Nerger et al. (2012) in order to combine advantages of both
these filters. It involves the introduction of a projection matrix into the square root equations
for projecting the forecast ensemble into the so called error subspace which is of dimension Ne−1
instead of Ne without explicitely removing the mean. Depending on how small the ensemble
is, this can give a speed up in comparison to the ETKF. For a comprehensive treatment of the
subject and the motavation and creation of the projection matrix see Nerger et al. (2012).

The entries of the projection matrix A which are used for transforming the forecast ensemble
are defined as

Ai,j :=


1− 1√

Ne

1√
Ne+1

for i = j, i < Ne

− 1√
Ne

1√
Ne+1

for i 6= j, i < Ne

− 1√
Ne

for i = Ne

(F.81)

Before using this projection matrix, we need to first show its orthogonality ATA = I, which
will make its insertion into the equation for the posterior error covariance possible.
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The columns of this matrix comprise one entry 1 − 1√
Ne

1√
Ne+1

, (Ne − 2) entries − 1√
Ne

1√
Ne+1

and one entry − 1√
Ne

which always is the last row. It can be shown, that A is an orthogonal

matrix by multiplying its columns with each other. For notational convenience B :=
√
Ne and

C :=
√
Ne + 1 are defined. The product of matrix columns aj and ak then is

aj · ak =

{
1− 2

BC + Ne−1
(BC)2

+ 1
B2 for j = k

− 2
BC + Ne−1

(BC)2
+ 1

B2 for j 6= k
(F.82)

We recognise, that for the orthonormality of the columns of A it needs to be shown that the
second equation is zero.
To that end we perform some standard algebraic transformations and plug back the terms for
B and C.

− 2

BC
+
Ne − 1

(BC)2
+

1

B2
=
−2BC

(BC)2
+

(Ne − 1)

(BC)2
+

C2

(BC)2
(F.83)

=
−2
√
Ne(
√
Ne + 1) + (Ne − 1) + (

√
Ne + 1)2

. . .
(F.84)

=
−2Ne − 2

√
Ne + (Ne − 1) +Ne + 2

√
Ne + 1

. . .
(F.85)

= 0 (F.86)

Having shown the orthonormality, we can finally introduce this projection matrix into the
posterior error covariance formulations.

X′(X′)T = XfAAT (I− STF−1S)(AATXf ′)T (F.87)

(F.88)

The term in brackets is reformulated as in the derivation of the ETKF (Equation F.6).

X′(X′)T = XfAAT (I− STR−1S

Ne − 1
)−1AATX ′

f T
(F.89)

= XfA(ATA− ATSTR−1SA

Ne − 1
)−1ATX′

f T
(F.90)

We introduce the definition of S := HX and denote the multiplication of the X with the
projection A as L.

TTT = XfA(I− (XA)THTR−1H(XA)

Ne − 1
)−1ATX′

f T
(F.91)

= XfA(I− (HL)TR−1(HL)

Ne − 1
)−1ATX′

f T
(F.92)

From that point on, the same Eigenvalue decomposition as for the ETKF is performed (Equation
F.14). The matrices U and Σ denote the Eigenvector and Eigenvalue matrices of T. I directly
present the results which are obtained by the same steps as for ETKF, the only difference being
that here the projection matrix A has been introduced.

T = UΣ−
1
2 UT (F.93)

W′ = ATAT = AUΣ−
1
2 UTAT (F.94)

w =
1√

Ne − 1
AUΣ−1UT (HL)TR−1d (F.95)



Appendix G

Code and data availability

The multi-timescale PaleoDA framework developed in this thesis and the code for reproducing
the figures can be found in the following public GitHub repository: https://github.com/paleovar/
paleoda. It also includes Jupyter notebooks for preprocessing the model data and selecting the
proxy records from the proxy databases.
The Ensemble Kalman Filters implemented in Python for this thesis are also available through
a seperate GitHub repository, which focuses only on the core Data Assimilation algorithms:
https://github.com/paleovar/ensemblefilters.
The simulation data of the five isotope-enabled climate simulations can be found in the Zenodo
repository which accompanies the publication by Bühler et al. (2022): https://zenodo.org/record/
6610684.
The SISALv2 speleothem record database is publicly available through a repository provided
by the University of Reading: https://researchdata.reading.ac.uk/256/.
The Iso2k database, which provided the ice core record data used in this thesis is publicly
available in a repository of the National Oceanic and Atmospheric Administration (NOAA):
https://www.ncei.noaa.gov/pub/data/paleo/reconstructions/iso2k/.
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