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What is the Kalman Filter (KF)?

The answer to the question:

Suppose you have a theoretical model and
observations:

What is the best way of combining both in
order to minimize the mean squared error?

A New Approach to Linear Filtering
and Prediction Problems’

R.E. KALMAN
Research Institute for Advanced Study.2
Battmore, Wd. | Sy

Figure 1: Original publication [Kalman, 1960]

— The KF provides an optimal weighted mean which also minimizes the uncertainty

(error variance).
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Iterative Kalman Filter scheme

Forecast equations
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Iterative Kalman Filter scheme

Forecast equations
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Iterative Kalman Filter scheme

Forecast equations
X,-f = FX,',l (1)
Bf =FBi_1FT + Q@ (2)

Analysis equations

x? = x + Ki(zi — Hx)) (3)

Ki=BfHT(HBfHT + R)™! (4)

Bf = (I — KiH)Bf (5)
Definitions

X state vector

. H obs. operator
observation .
B error covariance

z
; ey fnee Q, R model/obs. err.

Kalman gain

Iterative algorithm ) N

P ™~
<Observation >

~

e

I

.,’\ ‘-\"’:
% i %, ‘Observation “\\
f me Update i )
( pdate
\ (Forecast) /" (Analysis)

.

Requirements

e Gaussian errors

e Linear forward model



The Ensemble Kalman Filter (EnKF)
A Monte Carlo based implementation (Evensen 1994)

e Kalman Filter not suited for nonlinear models
(What's the covariance?)



The Ensemble Kalman Filter (EnKF)
A Monte Carlo based implementation (Evensen 1994)

e Kalman Filter not suited for nonlinear models
(What's the covariance?)

Assimilation Assimilation
step step

e State vector x is replaced by matrix X for an ensemble

of N models 4
X1 X11 XIN
x=|...| = X=1|x1 ... XiN (6)
Xm Xmi .-  XmN time

. . Figure 2: Principle of EnKF [Labah
e Approximate model error covariance through ensemble etagmm] rneip AT [Lebahn
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The Ensemble Kalman Filter (EnKF)
A Monte Carlo based implementation (Evensen 1994)

e Kalman Filter not suited for nonlinear models
(What's the covariance?)

Assimilation Assimilation

e State vector x is replaced by matrix X for an ensemble 2 =
of N models /B 4
X1 X11 X1N
x=|...| = X=1|x1 ... XiN (6)
Xm Xmi .-  XmN time

Figure 2: Principle of EnKF [Labahn

e Approximate model error covariance through ensemble et al, 2020]

Bl = g (X = X)(X = X)T

e Kalman equations stay the same




EnKF applied to the Lorenz 63 model

L63 system
x=—0o(x—y)
y=x(p—2z)—y
z=xy — bz

eg. 0 =10, p=28 and b =8/3

Measuring only one of the three variables,

trajectory?
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EnKF applied to the Lorenz 63 model

Reconstruction using measurements in y and wrong initial conditions

Estimates for y © Estimates for z
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e EnKF could also be used for parameter estimation
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Sequential Proxy Assimilation

Compute K for each proxy location

K =BHT(HBHT + R)~! (10)
= cov(X, HX)[cov(HX, HX) + R]~! (11)
_ cov(X, HX)
"~ var(HX) + R (12)
with

e X State vector/matrix from model
e H Observation Operator
e Hx model prior at proxy location

e R measurement error



Sequential Proxy Assimilation

Compute K for each proxy location Example: T at two locations, only T1 measured.
Temp. at proxy location (° C)
P T T -1 » —— Proxy value
K =BH (HBH + R) (10) Temperature at two locations for 100 annual-means ~ ,, == :noxryvallljes
— COV(X, HX)[COV(HX, HX) + R]71 (11) 3 s BN Posterior values
_ cov(X, HX) (12) 2 - 810
var(HX) + R 1 % 5

with Temp. at remote location (° C)
B Prior values

B Posterior values

e X State vector/matrix from model

Temperature at remote location (° C)
)
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e H Observation Operator a g
-2 o 2
e Hx model prior at proxy location Temperature at proxy location (* C) s
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e R measurement error



Offline Data-Assimilation

e Proxy record represents time-averaged
climate state variable

e Cycling approach computationally
costly for GCMs

e Predictability issue for long
time-scales: Models climatology may
be as informative as model forecast
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Offline Data-Assimilation

Proxy record represents time-averaged
climate state variable

Cycling approach computationally
costly for GCMs

Predictability issue for long
time-scales: Models climatology may
be as informative as model forecast

Omit the forecast step. Do not
reinitialize the model.
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Offline Data-Assimilation

e Proxy record represents time-averaged
climate state variable

e Cycling approach computationally
costly for GCMs

e Predictability issue for long
time-scales: Models climatology may
be as informative as model forecast

— Omit the forecast step. Do not
reinitialize the model.

;%:\_ /o,;,>
I\\(‘¥ _)/) K(Aﬂalvsls}‘

N

/ \
<Observation
7
>

e Transient Offline DA: Use time series
of the model

e Stationary Offline DA: Use all
modeled years as one prior. Give up
temporal consistency, but: huge prior
ensemble to sample from
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The Last Millennium Reanalysis framework [Hakim et al., 2016]

LMR characterstics

e Proxy data: Pages2k (Annual) Updata X, e —
Climate Model K= BH [HBA + R z 2
e Model: MPI-ESM, CESM Xo =5+ Kly = 9) Obscrvations
e W
e Time: Last Millenium ;
c Data
. s Assimilation
o  t
e Reconstructed Variables: T, Z500 ,,'1: ——
a
. . e
e Method: Stationary Offline DA, ts
dynamics Proxy System Models
PSMs e, b
HHHHH o
Coral Mode Forward Estimate

State Vector X, @ ¥ = H{x)

Figure 3: Kalman Filter Analysis cycle in LMR Project
[Hakim et al., 2016]



The Last Millennium Reanalysis framework [Hakim et al., 2016]

LMR characterstics
e Proxy data: Pages2k (Annual)

e Model: MPI-ESM, CESM

Time: Last Millenium

Reconstructed Variables: T, Z500

Method: Stationary Offline DA,
PSMs
Possible enhancements
e Not only annually resolved proxies
— Speleothems!
e |sotope enabled models

— 6180 assimilation

Update x;

Climate Model

)

e =—0
v en e

OGCM

T84 680,
dynamics
thermodynamics
isotope transport/

nnnnn &

State Vector X,

Figure 3: Kalman Filter Analysis cycle in LMR Project

[Hakim et al., 2016]
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Data
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Data for my project

Proxies
e Speleothems (SISAL v2)

e Icecores (Iso2k)

Models [Biihler et al., 2021]
e ECHAMb5-wiso
e GISS
e iCESM

iHadCM3

e isoGSM

Locations of speleothems (SISAL 1k)

Increasing dotsize represents datapoints per location (min=39, max=1738)

M Range of 5'°0

18,
90-VSMOW %] {5 45 15 20 025

Figure 4: Multi-model range[Biihler et al.,

2021]
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1. How to deal with the irregular time series?

Proxies used in LMR (2019v):

600 -

u
=}
o

400 -

Cumulative number of proxies
N w
o S
=3 =3

=
1)
5

0-

- I Corals and sclerosponges_d180

- Ml Lake cores varve

— Total
I Tree rings_WidthPages2

Tree rings wood density
Ice cores_d180

M Corals and sclerosponges_SrCa
Corals and sclerosponges rates
Ice cores_dD

Lake cores misc

Bivalve_d180

Tree rings isotopes
M Ice cores melt feature

_

0 250 500 750 1000 1250 1500 1750 2000

Year CE
Figure 5: [Tardif et al., 2019]

e Trade-Off: Number of proxies - Time

resolution

e Downsampling of prior ensemble

Speleothem availability:
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2. How to deal with the spatial sparsity of proxies?

Proxies used in LMR (2019v): Speleothem availability:

(© PAGES2k (2017) proxies: 544 sites (d)
e

Locations of speleothems
e >

&

Ice cores_dD (7)

Lake cores misc (2)

Lake cores varve (5)

Tree rings isotopes (1)

Tree rings_WidthPages2 (347)
Tree rings wood density (59)

Bivalve_d180 (1)

Corals and sclerosponges rates (8)
Corals and sclerosponges_SrCa (25)
Corals and sclerosponges_d180 (60)
Ice cores melt feature (1)

Ice cores_d180 (28)

Figure 6: [Tardif et al., 2019]
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e Sensitivity to observations
e Number of proxies vs location
— Pseudoproxy experiments "



3. What is the climatic importance of low-/high-latitude proxies?

How representative are speleothemes and icecores?
How do reconstructions compare for different variables (T, Z500, 5180)?

60 - <
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-30 -

—90

Figure 7: M. Mann Pseudoproxy Networks (grey boxes/red dots), from [Smerdon, 2012]

15



4. Variance of recorded and simulated 520

Model-Data mismatch
e On decadal timescales more
variabilty in Speleothemes
than in models
e Literature: mismatch
increases on longer timescales
[Laepple and Huybers, 2014]

c) 6'505;‘.“/01805‘," (record resolution)
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Figure 8: from Biihler 2021

How will this change for data assimilated §'80O-fields?
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5. Can we join the prior ensemble of different models?

Performance of models

e Perform reconstructions with single

model /multi-model prior

Parsons et al. (2021):

We find that reconstructions derived from

multi-model ensembles produce lower error than 150G5M Ensemble of all models

S
e 2]

error over regions far from proxy locations. -
0

reconstructions from single-model ensembles when
reconstructing independent model and instrumental

data. Specifically, we find the largest decreases in

20 4 80 100
% of speleo within model range 95% CI

Figure 9: Model vs proxy range for our data



Project Plan

1. Literature research
2. Basic preparation

e understand math of the method
e EnKF implementation for L63 «/
e proxy/model data crunching

3. Review LMR code /

e find/write working code »
e test code i
e PSM implementation 2

4. PPE experiments s
5. Real proxies »

6. Analysis/write up s

18



Questions and discussion
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Backup slides



Examples of Paleoclimate DA (1)

DA from LMR included in Pages2k
Consortium Publication:

Temperatse anomaly ()

o S 400 500 800 100 1200 Ob 1D 1800 2000
Yearee

Figure 10: [Neukom et al., 2019] [Hakim et al.,
2016

[Steiger et al., 2014] did the prework for
LMR and compared DA climate field
reconstruction to PCA method.

@ DA, COSM4, r = 0.94 ) PCA, CCSM4, PCs = 10, = 0.71
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FIG. 5. Global anomaly res ions using (2) DA and (b) PCA techniques with CCSMd
over the same calibration and reconstruction periods as in Figs. 3 and 4 (calibration period: 1956-2005; re-
construction period: 1871-1955). Gray shading is one std dev of the 30 reconstruetions.
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Examples of Paleoclimate DA (2)

Data Assimilation of Surface mass balance and §180 for the AIS, [Dalaiden et al., 2021]

‘West Antarctica East Antaretics Antaretica
r=0.29; RMSE=54.3 r=0.50* RMSE=31.8 .50%; RMSE=60.1

1

1%

SMB (6t yr

r=0.94%;RMSE=37.1 r=0.89% RMSE=15.0 r=0.95% RMSE=35.0

DA SMB
S8 [t yr-7)

r=0.74% RMSE=41.4 r=0.85";RMSE=15.7 r=0.84*RMSE=40.3

8 (Gt yr-1)

DA 8150 and svm

ihy
1850 1000 1950 2000 1850 1900 1950 2000 1850 1900 1950 2000
Fears CE aars c& vaars CE




Examples of Paleoclimate DA (3)

Application of LMR framework for the LGM [Tierney et al., 2020], [Osman et al., 2021]

Data DA Model
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Figure 12: Osman 2021, Deglacation

Figure 11: Tierney 2021, LGM
e One Model only (iCESM)

e Marine proxies only

reconstruction

reconstruction
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Model-Data ensemble spread comparison

6180 from proxy and models for Bunker cave (dweq) (annual res)
Origin

cesm_an
echam_an
giss_an
hadcm3_an
isogsm_an

proxy

0.8

Kernel density estimate
°
o

0.2

-13 -12 -11 -10 -8 -7 -6 -5

-9
6'%0

Infiltration weighted. Drip water conversion uses temperature from all simulations

— Apply bias-correction to model prior?

Performance of models

80 100
% of speleo within model range 95% CI
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Verification of reconstructions

Problem

To what shall we compare the reconstructed §180-fields to?

1. Compare T for instrumental period (indirect comparison)

2. Assume one model as truth, synthesize pseudoproxies (direct 680 comparison)

Metrics

e Correlation

e Coefficient of Efficiency

(cf true time series to estimated time series) CE =1 — Z(X'ifﬁ’)j
2 (xi—x)
e Rank histograms (ensemble bias)

e Withholding proxy-data (cross validation)
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Ensemble Square Root Kalman Filter (EnSRF)

From [Steiger et al., 2014]: Motivation

b. Algorithm sketch e Ensemble Kalman Filter requires perturbed
105 ic:gej:gs_'em“m“c"“" year, we perform the fol- observation for ensemble variance to be correct
(i) Construct x;, then z, from Xx,, and the annual e EnSRF does not require this
pseudoproxy vector y. °
(ii) Find the error r from Eq. (9) for each pseudoproxy.
(iii) Split z, into an ensemble mean and perturbations
from this mean:

The main idea is to treat ensemble mean and
perturbations separately (Formulas with different

Kalman gains)
2,=%,+2,.

(iv) For each pseudoproxy: (v) The full analysis ensemble may be recovered
1) Compute y. = Hx;. through
2) Split up y, into an ensemble mean and pertur-
bations from this mean:

Yo=Y+ Yer
where the column vector Z, is added to each

3) Compute K from Eq. (A3) for every grid point. column vector of 2
a*

4) Apply the localization function, if desired, to .
K except for the last entry (the global-mean value) (vi)
5) Compute K from Eq. (A4) for every grid point.

After each year’s pseudoproxies have been assim-
ilated, we add the last column entry of Z, to the rest

6) At each grid point, update the analysis ensem-
ble mean and perturbations from this mean:

z,=%,+K(y—y,) and
! J '
2, =z, — Ky,.

7) Use Z, and Z;, as 7, and 2z}, respectively, for the
next observation.

of Z, to recover X,, the reconstructed temperature
field for that year. We also use the last column entry
of Z, as the reconstructed global-mean tempera-
ture for that year.
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Alternative Method: The particle filter (sequential Monte Carlo)

Principle

1.
2.

Use ensemble of models (particles)

At each assimilation step compute
RMSE between climate field of models

and proxy
Select best fitting particle(s)

Resample and compute weighted mean

Simpler concept

More flexible, no need for normal
distribution of errors

Degeneracy problem: One particle
gets all the weight

Initial Distribution

Sampling
o0 000000000000
Weighting
—@ -0
Resampling

oo

Figure 13: Particle Filter steps (without posterior
distribution), from miro.medium.com
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