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What is the Kalman Filter (KF)?

The answer to the question:

Suppose you have a theoretical model and

observations:

What is the best way of combining both in

order to minimize the mean squared error? Figure 1: Original publication [Kalman, 1960]

→ The KF provides an optimal weighted mean which also minimizes the uncertainty

(error variance).
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Iterative Kalman Filter scheme

Forecast equations

x fi = Fxi−1 (1)

B f
i = FBi−1F

T + Q (2)

Analysis equations

xai = x fi + Ki (zi − Hx fi ) (3)

Ki = B f
i H

T (HB f
i H

T + R)−1 (4)

Ba
i = (I − KiH)B f

i (5)

Definitions
x state vector

z observation

F linear model

K Kalman gain

H obs. operator

B error covariance

Q,R model/obs. err.

Requirements

• Gaussian errors

• Linear forward model
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The Ensemble Kalman Filter (EnKF)

A Monte Carlo based implementation (Evensen 1994)

• Kalman Filter not suited for nonlinear models

(What’s the covariance?)

• State vector x is replaced by matrix X for an ensemble

of N models

x =

 x1

. . .

xm

→ X =

x11 . . . x1N

xi1 . . . xiN
xm1 . . . xmN

 (6)

• Approximate model error covariance through ensemble

B f
i = 1

N−1 (X − X̄ )(X − X̄ )T

• Kalman equations stay the same

Figure 2: Principle of EnKF [Labahn

et al., 2020]
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EnKF applied to the Lorenz 63 model

L63 system

ẋ = −σ(x − y) (7)

ẏ = x(ρ− z)− y (8)

ż = xy − bz (9)

e.g. σ = 10, ρ = 28 and b = 8/3

Measuring only one of the three variables, can we estimate the whole

trajectory?
7



EnKF applied to the Lorenz 63 model

Reconstruction using measurements in y and wrong initial conditions

• EnKF could also be used for parameter estimation

8
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Sequential Proxy Assimilation

Compute K for each proxy location

K = BHT(HBHT + R)−1 (10)

= cov(X,HX)[cov(HX,HX) + R]−1 (11)

=
cov(X,HX)

var(HX) + R
(12)

with

• X State vector/matrix from model

• H Observation Operator

• Hx model prior at proxy location

• R measurement error

Example: T at two locations, only T1 measured.
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Offline Data-Assimilation

• Proxy record represents time-averaged

climate state variable

• Cycling approach computationally

costly for GCMs

• Predictability issue for long

time-scales: Models climatology may

be as informative as model forecast

→ Omit the forecast step. Do not

reinitialize the model.

• Transient Offline DA: Use time series

of the model

• Stationary Offline DA: Use all

modeled years as one prior. Give up

temporal consistency, but: huge prior

ensemble to sample from
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The Last Millennium Reanalysis framework [Hakim et al., 2016]

LMR characterstics

• Proxy data: Pages2k (Annual)

• Model: MPI-ESM, CESM

• Time: Last Millenium

• Reconstructed Variables: T, Z500

• Method: Stationary Offline DA,

PSMs

Possible enhancements

• Not only annually resolved proxies

→ Speleothems!

• Isotope enabled models

→ δ18O assimilation

Figure 3: Kalman Filter Analysis cycle in LMR Project

[Hakim et al., 2016]
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Data for my project

Proxies

• Speleothems (SISAL v2)

• Icecores (Iso2k)

Models [Bühler et al., 2021]

• ECHAM5-wiso

• GISS

• iCESM

• iHadCM3

• isoGSM

Figure 4: Multi-model range[Bühler et al., 2021] 12



1. How to deal with the irregular time series?

Proxies used in LMR (2019v):

Figure 5: [Tardif et al., 2019]

• Trade-Off: Number of proxies - Time

resolution

• Downsampling of prior ensemble

Speleothem availability:

13



2. How to deal with the spatial sparsity of proxies?

Proxies used in LMR (2019v):

Figure 6: [Tardif et al., 2019]

Speleothem availability:

• Sensitivity to observations

• Number of proxies vs location

→ Pseudoproxy experiments 14



3. What is the climatic importance of low-/high-latitude proxies?

How representative are speleothemes and icecores?

How do reconstructions compare for different variables (T, Z500, δ18O)?

Figure 7: M. Mann Pseudoproxy Networks (grey boxes/red dots), from [Smerdon, 2012]
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4. Variance of recorded and simulated δ18O

Model-Data mismatch

• On decadal timescales more

variabilty in Speleothemes

than in models

• Literature: mismatch

increases on longer timescales

[Laepple and Huybers, 2014]

Figure 8: from Bühler 2021

How will this change for data assimilated δ18O-fields?

16



5. Can we join the prior ensemble of different models?

• Perform reconstructions with single

model/multi-model prior

Parsons et al. (2021):

We find that reconstructions derived from

multi-model ensembles produce lower error than

reconstructions from single-model ensembles when

reconstructing independent model and instrumental

data. Specifically, we find the largest decreases in

error over regions far from proxy locations.

Figure 9: Model vs proxy range for our data
17



Project Plan

1. Literature research ��

2. Basic preparation ��
• understand math of the method �
• EnKF implementation for L63 ��
• proxy/model data crunching ��

3. Review LMR code �
• find/write working code κ
• test code κ
• PSM implementation κ

4. PPE experiments κ
5. Real proxies κ
6. Analysis/write up κ

18



Questions and discussion
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Backup slides



Examples of Paleoclimate DA (1)

DA from LMR included in Pages2k

Consortium Publication:

Figure 10: [Neukom et al., 2019] [Hakim et al.,

2016]

[Steiger et al., 2014] did the prework for

LMR and compared DA climate field

reconstruction to PCA method.

19



Examples of Paleoclimate DA (2)

Data Assimilation of Surface mass balance and δ18O for the AIS, [Dalaiden et al., 2021]

20



Examples of Paleoclimate DA (3)

Application of LMR framework for the LGM [Tierney et al., 2020], [Osman et al., 2021]

Figure 11: Tierney 2021, LGM reconstruction

Figure 12: Osman 2021, Deglacation

reconstruction

• One Model only (iCESM)

• Marine proxies only
21



Model-Data ensemble spread comparison

→ Apply bias-correction to model prior?
22



Verification of reconstructions

Problem

To what shall we compare the reconstructed δ18O-fields to?

1. Compare T for instrumental period (indirect comparison)

2. Assume one model as truth, synthesize pseudoproxies (direct δ18O comparison)

Metrics

• Correlation

• Coefficient of Efficiency

(cf true time series to estimated time series) CE = 1−
∑

(xi−x̂i )
2∑

(xi−x̄)2

• Rank histograms (ensemble bias)

• Withholding proxy-data (cross validation)

23



Ensemble Square Root Kalman Filter (EnSRF)

From [Steiger et al., 2014]:

24

Motivation

• Ensemble Kalman Filter requires perturbed

observation for ensemble variance to be correct

• EnSRF does not require this

• The main idea is to treat ensemble mean and

perturbations separately (Formulas with different

Kalman gains)



Alternative Method: The particle filter (sequential Monte Carlo)

Principle

1. Use ensemble of models (particles)

2. At each assimilation step compute

RMSE between climate field of models

and proxy

3. Select best fitting particle(s)

4. Resample and compute weighted mean

• Simpler concept

• More flexible, no need for normal

distribution of errors

• Degeneracy problem: One particle

gets all the weight

Figure 13: Particle Filter steps (without posterior

distribution), from miro.medium.com
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