
Temperature reconstructions for the Last Glacial Maximum as
constraints for climate sensitivity
Mathurin Choblet1

1Heidelberg University, Heidelberg, Germany

Abstract. This seminar report reviews studies that constrain
climate sensitivity using the Last Glacial Maximum (LGM).
I outline the methods that are used in order to combine in-
sights both from climate models and proxy data. Results from
selected studies are presented and classified with respect to5

their limitations and further development in the field. I con-
clude that studies using the LGM as a benchmark period can
definitely be used in order to estimate climate sensitivity and
effectively constrain its upper limit.

1 Introduction10

Climate sensitivity is considered a key number in climate
change science. It is defined as the global mean tempera-
ture rise when the amount of the greenhouse gas CO2 in
the atmosphere is doubled with respect to the preindustrial
level (from 280 to 560 ppm). As the concept is easy to grasp15

and the importance of anthropogenic climate change is now
widely acknowledged, climate sensitivity has gained popu-
larity in the last decades. It was Swedish chemist and No-
bel laureate Svante Arrhenius who in 1896 calculated the ef-
fect of increased CO2 levels on temperature for the first time20

(Arrhenius, 1896), but the concept only got popular with the
so called Charney Report (Charney, 1979). In this study on
behalf of the National Academy of Sciences of the United
States, which was one of the earliest assessments of global
warming, the best estimate 3±1.5◦C. Since then it has been25

subject to many studies and in consequence is included in
every IPCC report. In the last assessment report 6 (IPCC,
2021) it is estimated between 2.5◦C and 4◦C. A comprehen-
sive introduction into the topic is given by Knutti and Hegerl
(2008) and a subsequent review paper (Knutti et al., 2017).30

There are many approaches to estimate climate sensitivity,
data from the instrumental period, the last millennium, vol-
canic eruptions and paleoclimatic periods are used. Figure 1
visualizes probability distribution functions (pdfs) from var-

ious studies included in AR4 by the IPCC. The upper limit 35

of these pdfs is often not well constrained, the possibility of
really high climate sensitivities poses a problem for risk as-
sessments of climate change impacts. Thus the leading ques-
tion of my seminar report is not only how these curves are
obtained, but if the upper limit can be constrained better. 40

For this report I focus on the Last Glacial Maximum
(LGM), one of the best studied climatic periods of earth’s
history. Climatologists locate the peak of the glacial extent
of this period around 21’000 years ago. During this period
large parts of the landmasses on the northern hemisphere 45

were covered by a thick ice shield, current estimates for mean
global cooling range from 3◦C to 5◦C. Estimates from sea
level reconstructions with corals lead to the conclusion that
the sea level was up to 120 m lower than today according to
AR4 (Solomon et al., 2007). The atmospheric composition 50

was substantially different, for instance CO2 is assumed to
have been at 180 ppm instead of the present 400 ppm. This is
one of several reasons that makes the LGM a period of high
value for assessing climate sensitivity. The cold condition
persisted for millennia, which equals near equilibrium con- 55

ditions and a strong climate signal. Furthermore many kinds
of proxy data are available and the different radiative forc-
ings and responses are quite well known. Last there are many
LGM simulations that have already been developed and com-
pared to LGM proxy data (von Deimling et al., 2006). 60

This report is structured as follows: The first section is
dedicated to the definition of climate sensitivity in terms
of physical quantities, timescales and feedback mechanisms.
An introduction into statistical methods is given, which is
critical for model data comparison. Then two methods of es- 65

timating climate sensitivity with LGM data are presented, I
call them the model ensemble and the temperature recon-
struction approach. Results from studies using these meth-
ods are presented and discussed with regard to caveats and
uncertainties. 70
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Figure 1. Figure taken from AR4 (9.6.2.1) (Solomon et al., 2007). It shows pdfs for Equilibrium Climate Sensitivity. Below the 5 to 95%
confidence intervals are shown. The studies used very different kind of data in order to assess Equilibrium Climate Sensitivity and are not
limited to the LGM. The graphs are representative for many climate sensitivity studies due to the characteristic of constraining the lower limit
well in comparison to the upper limit which is not well constrained. The possibility of really high climate sensitivity causes uncertainties in
predicting anthropocentric climate change.

2 Definitions of Climate Sensitivity

When talking about climate sensivity we need to differen-
tiate between three concepts, Transient Climate Response
(TCR), Equilibrium Climate Sensitivity (ECS) and Earth Sys-
tem Sensitivity (ESS) (Knutti and Hegerl, 2008). TCR is de-5

fined as the warming in response to increasing the atmo-
spheric concentration of CO2 at a rate of 1% per year, hence
the warming after 70 years. The timescales looked at here are
a few decades, thus TCR depends strongly on the ocean heat
uptake. As it characterizes the speed of imminent climate10

change TCR is favored to describe anthropogenic impact
on climate and therefore the value primarily communicated
to policy makers. It is a value closely linked to the emis-
sion pathways outlined in the IPCC reports and the Transient
Climate Response To Cumulative Carbon Emission (TCRE),15

which is the temperature increase per ton of emitted carbon.
Equilibrium climate sensitivity is the change in global

mean temperature until a new equilibrium state is reached. In
practice the earth system never is in perfect equilibrium, such
that near equilibrium states are considered. The timescale20

goes up to millennia, therefore climate feedbacks like in-
creased water vapor, changes in lapse rate, albedo and clouds
that by themselves additionally influence temperature are
considered (Figure 2). For paleoclimatologists ECS is the
value of central interest and also the climate sensitivity I25

looked at during my literature research.
On long time scales it is often debated if earth-system re-

sponses beyond the point of reaching near equilibrium, like
slowly changing vegetation patterns, ice shields or the deep

Figure 2. Visualization of the meaning of Equilibrium Climate Sen-
sitivity. The warming caused by CO2 triggers feedback mechanisms
like changes in water vapor content, lapse rate and clouds in the at-
mosphere that by themselves can reduce or increase further warm-
ing. Taken from Femkemilene via Wikimedia Commons.

ocean currents should be included. These adaptations of the 30

earth system will also alter earth’s temperature on the long
run. In climate models these components are often fixed and
can not change, such that this is often neglected. In recent
years a third definition for climate sensitivity has been in-
troduced, Earth System Sensitivity (ESS) which includes also 35

feedbacks that have effects after a (near) equilibrium state is
reached, but is the most difficult to properly simulate and not
subject to my literature review.

2.1 Climate sensitivity from an energy balance
perspective 40

Having introduced these definitions we can now look at cli-
mate sensitivity from a more physical perspective with re-
spect to the underlying forcings.
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A climate forcing is the change of energy flux (energy per
time per area) in response to natural or anthropogenic influ-
ences on the climate system. Considering the earth’s radiative
(im)balance is thus the starting point of our considerations

∆Q= ∆F − 1

λ
∆T (1)5

∆Q is the heat flux in W/m2 in response to a radiative
forcing ∆F and the corresponding temperature increase of
the system, ∆T . It is scaled by a factor λ= ∆T

∆F−∆Q , the cli-
mate sensitivity parameter, which is the temperature change
per difference of radiative forcing and resulting heat flux.10

Considering a situation of equilibrium for ECS the heat flux
is set to zero. The other fundamental characteristic of ECS is
that the forcing due to doubled CO2, so we explicitly denote
it as ∆F2xCO2 . This imbalance caused by doubled CO2 is
estimated to be around 3.7W/m2 in the TAR (Forster et al.,15

2007). Hence we get for equation 1

1

λ
∆T = ∆F2xCO2 (2)

The difficulty lies in estimating λ. Assuming that it is an
inherent fixed value of our earth system we can calculate it
from the cooling ∆TLGM and the forcings ∆FLGM during20

the LGM. As the LGM is also assumed to be in near equi-
librium the heat flux ∆QLGM is set to zero. Hence we get a
simple formula to calculate ECS with prior knowledge about
the LGM.

ECS = ∆T2xC02 = ∆F2xCO2 ·λ (3)25

= ∆F2xCO2
· ∆TLGM

∆FLGM
(4)

Note that the literature is not consistent with regard to
naming λ or its inverse 1/λ the climate sensitivity parameter.

As seen in Figure 1 probability distribution functions for
ECS tend to be rather broad with large tails. The uncertainties30

in ECS are due to two main reasons. The first one is due
to uncertainties in the total forcing, especially with aerosol
forcing or ocean heat uptake that are not constrained tightly.
This allows for λ to take a range of values. The second reason
is the nonlinear relation of ECS to the feedback parameter f35

that is introduced in the following subsection.

2.2 Climate sensitivity from a climate feedback
perspective

Climate feedbacks are processes that amplify or diminish the
effects of climate forcings. For instance a warming due to40

increased CO2 leads to more evaporation, hence more water
vapor, which is also a greenhouse gas into the atmosphere,
such that additional warming is caused. On the other hand
emission of an aerosol can lead to a more reflective atmo-
sphere hence less radiation enters the atmosphere.45

Figure 3. Representation of a feedbacks taken from Roe (2009) The
input energy ∆R is processed by the reference system, leading to
a temperature increase ∆T . A part of the output energy is fed back
into the system via various feedbacks. λ0 is the climate sensitivity
parameter without any feedback.

Following the review article on climate feedbacks by Roe
(2009) I introduce a simplified linear feedback models which
helps in understanding the large tails of climate sensitivity
pdfs.

As depicted in Figure 3 a climate feedback can be under- 50

stood as a part of the output energy that is fed back into the
system. We look at this situation from an energy balance per-
spective again. The temperature increase ∆T0 without any
feedbacks is just

∆T0 = λ0(∆F −∆Q) = λ0∆R (5) 55

as before. ∆R is the input energy. In a simple linear model,
the energy that goes back to the input side is proportional
to the output temperature and a scaling factor c for each
feedback. Assuming no interaction between the feedbacks all
scaling factors can be summed into one feedback factor f : 60

∆T = λ0(∆R+
∑

ci∆T ) (6)

= λ0∆R+ f∆T (7)

Solving this equation for ∆T gives

∆T = ∆T0 ·
1

1− f
(8)

Hence the nonlinear relationship between climate feedbacks 65

and temperature response. With regard to the uncertainties in
temperature response the error propagation formula states as
follows

δ(∆T ) = ∆T0 ·
1

(1− f)2
· δf (9)

Thus the uncertainty does not depend on the uncertainty of 70

the feedback parameter alone, but also on the feedback pa-
rameter itself. The closer f gets to unity the larger δ(∆T ).
This explains both asymmetry and large tail of pdfs for ECS.
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3 Statistical methods in climate sensitivity studies

In climate science knowledge of physical fundamentals rep-
resents only one side of the coin. As a lot of data with many
uncertainties is investigated the other side is statistics. When
investigating paleoclimatic periods from a model and a proxy5

data perspective the challenge lies in reconciling model and
observations. This task belongs to the field of Data assimila-
tion, which was originally developed for weather forecasting.
In the following I briefly go through one basic but crucial
theorem, Bayes’ theorem and its application in the ensem-10

ble Kalman filter. I follow the lecture on data assimilation by
Nathan Kutz (Kutz, 2018).

3.1 Bayes theorem

When talking about climate sensitivity we are dealing with
probability distribution functions. Bayesian inference tells us15

how to update probability distributions in light of new infor-
mation. In the following H stands for hypothesis, E for evi-
dence and the vertical bar stands for conditional probability.
The Bayesian formula goes as follows

P (H|E) =
P (E|H) ·P (H)

P (E)
(10)20

On the left hand side we find the posterior probability
P (H|E), which is the new probability for the hypothesis
if evidence is introduced. On the right hand stands how the
prior probability P (H), the initial probability for our hypoth-25

esis, is updated. It is multiplied with the likelihood P (E|H),
which is the probability for the observed evidence given the
probability distribution of the hypothesis. The product is di-
vided by the marginal likelihood P (E) which is basically a
normalization constant. This simple formula can be applied30

iteratively. Applying it many times weakens the dependency
of the initial hypothesis.

3.2 Data Assimilation - the ensemble Kalman filter

We are now going to apply this theorem. A variable like tem-
perature is predicted by a climate model, this is the hypoth-35

esis. Proxy data represents new evidence. The Kalman filter
presented here is just the one dimensional formulation, but it
is sufficient to show the principle of reconciling model and
proxy data. In the following the model is denoted as x and
the proxy data as y. Assuming a prior distribution given by40

the initial model P (x) we would like to estimate how this
distribution changes in light of new proxy data y. σ0 and σy
represent the errors in model and measurement.

We start with the Bayesian formula

P (x|y) =
P (y|x) ·P (x)

P (y)
(11)45

We assume the prior distribution of the variable x to be
normally distributed around a mean value x0. The likelihood,

which is the probability of the measurement with respect to
the model distribution, is also assumed to be a Gaussian dis-
tribution. c1, c2 and c3 are normalization constants. 50

P (y|x) = c1e
− 1

2

(
y−x
σy

)2
(12)

P (x) = c2e
− 1

2

(
x−x0
σ0

)2
(13)

Incorporating the marginal distribution P (y) and c1 and c2
into the normalization constant c3 we thus get for the poste-
rior probability 55

P (x|y) = c3e
− 1

2

((
y−x
σy

)2
+
(
x−x0
σ0

)2)
= c3e

−J(x) (14)

Here the cost function J(x) has been introduced. The aim is
to maximize the Likelihood, thus find the value x̄ where the
Likelihood is maximal. Instead of differentiating the whole
equation we can just differentiate the cost function in the ex- 60

ponent due to the negative sign

∂J

∂x
= 0 =

(y− x̄
σ2
y

)
−
( x̄−x0

σ2
0

)
(15)

⇒ x̄=
( σy

2

σy2 +σ0
2

)
x0 +

( σ0
2

σy2 +σ0
2

)
y (16)

Introducing the Kalman gainK withK = σ0
2

σ0
2+σy2 the last

equation can be formulated as an update equation. 65

x̄= x0 +K(y−x0) (17)

This equation tells us how the model mean x0 goes over into
the best value x̄ when measuring y. This depends on the ra-
tio of model and measurement errors in the Kalman gain K.
The difference between y and x0 is called the innovation. For 70

instance if the model error σ0 is small compared to σy , K is
zero, thus the mean value is not updated. On the other hand if
the measurement error σy is small the mean value is replaced
by the measured value.

Regarding the error of the new posterior distribution it can 75

be shown that σ̄ is both smaller than σ0 and σy . Hence the
advantage of combining both model and measured data. We
get a new distribution with a smaller error.

4 Reviewed studies of ECS constraints with
paleoclimatic LGM data 80

4.1 Model ensembles

The basic idea of the model ensemble approach to constrain
climate sensitivity is to tune a climate model. The tuned cli-
mate model should simulate the LGM according to proxy
data and the rise of global mean temperature in a scenario 85

with doubled CO2 concentration.
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The direct advantage of this approach is that one does not
have to assume a direct relationship between the climate sen-
sitivity parameters for both climate states. The climate sensi-
tivity arises as a consequence of many factors, it is an emer-
gent property of the climate model. However, the main as-5

sumption here lies in trusting the climate models to repro-
duce the change in climate feedbacks correctly.

In detail the procedure can be divided into five steps.

1. In order to tune the climate model the investigators se-
lect parameters that are going to be varied along a range10

of values. This is called perturbation. Doing so is valid
because climate models heavily rely on parameteriza-
tion and many equations are empirically based. Depend-
ing of the climate model this procedure is applied to
only one parameter or to a whole set of parameters. In15

the latter case Monte Carlo techniques are used in a way
that the parameter space is efficiently sampled. Possi-
ble correlations between the parameters of the climate
model need to be considered in the resulting pdfs.

2. The climate model is run for preindustrial or present20

day boundary conditions for each configuration of per-
turbed parameters. This is a viability check. Configura-
tions leading to climate states not in accordance with the
data record are discarded.

3. The climate model is run in a scenario of doubled CO225

concentration for some millennia until an equilibrium
state is reached. Like this each parameter configura-
tion can be associated to the according change in global
mean temperature, the Equilibrium Climate Sensitivity.

4. The climate model is run with LGM boundary condi-30

tions, the most important ones being ice sheet coverage,
atmospheric composition, lower sea lea level and the or-
bital configuration.

5. Finally the viability of the simulated LGM state is as-
sessed by comparison with proxy data, which is usu-35

ally done with techniques of Bayesian inference as pre-
sented in the previous section.

Steps 2 to 5 are repeated for all sets of parameter configu-
rations, such that a probability distribution for equilibrium
climate sensitivity can be obtained. The challenge lies in do-40

ing a good model data comparison. The change in global
mean surface temperature can be attributed to different types
of forcings by testing various configurations, for instance
by only changing the atmospheric composition, holding ice
shields fixed or by excluding dust and vegetation models.45

The climate models chosen are of intermediate complex-
ity. They should not be too intensive computation-wise be-
cause they are run for thousands of years for thousands of dif-
ferent parameter configurations. Before I proceed with pre-
senting some results from this type of study I want to briefly50

answer the question why it is even necessary to do the LGM

model runs and why a model data comparison for the prein-
dustrial/present day simulation is not sufficient in the first
place.

Wigley et al. already investigated in 1997 if the observed 55

global warming can constrain climate sensitivities (Wigley
et al., 1997). The authors came to the conclusion that the un-
certainties regarding the forcings make it impossible to nar-
row the range of climate sensitivity estimates. For instance
parts of the greenhouse gas forcing could have been can- 60

celed out by aerosols. The climate sensitivity range that is
compatible with the recent climate record is larger than what
is obtained by the paleoclimatic studies. Since the study by
Wigley et al. this has been established as a fact. Thus the
necessity for using paleoclimatic data arose. 65

4.1.1 Studies

To my knowledge Annan et al. (2005) were the first who used
the approach of climate model ensemble runs. The authors
used the atmospheric component of the MIROC3.2 model
where 25 parameters were varied. For the ocean they referred 70

to a slab ocean, thus possible circulation changes in the ocean
were not considered. For the proxy data comparison the study
relies on tropical ocean temperatures for the LGM. The au-
thors assumed the estimates of global average temperatures
available at that time (2005) to be not good enough. Exper- 75

iments with different levels of LGM constraints were done,
leading to a most likely climate sensitivity of around 4.5◦C.
Nonetheless, the authors came to the conclusion that their
model is biased toward too high climate sensitivities. Hence
they do not give a final estimate for equilibrium climate sen- 80

sitivity. The central result of the study is that the probability
for climate sensitivity exceeding 6◦C is estimated with less
than 7%, such that it can be considered unlikely. Another
interesting side result is that a statistically significant linear
correlation between LGM cooling and ECS is observed. Ac- 85

cording to this study uncertainties in the response of their
model inhibits tight climate sensitivity estimates even in case
of better LGM reconstructions.

Around the same time a similar type of study was carried
out by von Deimling et al. (2006). They used the CLIMBER- 90

2 model (which also includes an ocean model), where 11
parameters were perturbed. The proxy data used for model
data comparison was limited to the tropical Atlantic. Initially
the authors also thought of estimating climate sensitivity by
Bayesian inference, however they found a linear correlation 95

between LGM cooling and ECS even stronger than in the
study by Annan et al. (see Figure 4). Hence they linearly ex-
trapolated an ECS range from the LGM cooling range. The
ECS estimate lies in the range of 1.2-4.3◦C. The authors em-
phasize the capacity of being able to constrain the upper limit 100

of ECS. They do not take the robustness of the quasi-linear
relationship between LGM cooling and ECS for granted.

The third study I would like to present is the study by
Schmittner et al. (2011). It used the University of Victo-
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Figure 4. Relationship between LGM cooling and climate sensi-
tivity for various regions found in the study by von Deimling et
al.. The blue dots represent simulation runs that fitted to stricter
constraints than the simulations represented by green dots. The cor-
relation found here is stronger than the one found in other studies
and is rather surprising. It could be due to an inherent property of
the earth system, or what is more likely, of the climate model used.
Taken from von Deimling et al. (2006).

ria climate model where one parameter was perturbed. The
novelty in this study consisted of using global proxy data
for the LGM and not only regionally limited data sets. This
was made possible by results from the Multiproxy Approach
for the Reconstruction of the Glacial Ocean (MARGO)-5

project in particular. This new data suggests that the LGM
was warmer than previously assumed. As a consequence the
study by Schmittner came to a lower best estimate of 2.3◦C
in a range of 1.7-2.6◦C for ECS. From sensitivity tests of
including proxy data from specific regions only the authors10

concluded that global data coverage is crucial for estimating
ECS.

4.2 Proxy reconstructions

The straight forward approach to estimate ECS is to calculate
it from formula 4. To that end the following question has to15

be answered: How cool was the LGM and how large was the
radiative forcing?

The recent study by Tierney et al. (2020b) focuses on the
part of reconstructing LGM temperature. The idea was to
simulate the Last Glacial Maximum and regularly update the20

simulation with proxy data using data assimilation as pre-
sented in the second section. The simulated climate state thus
serves as the prior distribution. The study used the isotope-
enabled Community Earth System Model. The isotope com-
ponent allowed for a posterior verification of the simulated25

temperatures with data from δ18O records. The time resolu-
tion of the updating procedure was fifty ears.

Figure 5. Proxy locations used by Tierney et al. The proxies are
purely marine based, but globally distributed. The data obtained
from the marine sediments proxies (all except δ18O) was used at a
50 year resolution in order to enhance the LGM simulation via data
assimilation. δ18O was used for later validation due to the model
being isotope enabled. Taken from Tierney et al. (2020b).

Figure 6. Global mean surface cooling for the LGM as obtained
from a purely proxy data based estimate, data assimilation and from
the model prior. It shows the strength of reducing the final uncer-
tainty via data assimilation. Just looking at the values it seems that
either the proxy data or the model is biased. Taken from Tierney
et al. (2020b).

This study represents a real improvement due to its use of
a variety of marine proxies on a global scale. The SST prox-
ies used in this study are displayed in the map in Figure 5. 30

Figure 6 visualizes the improvement obtained by using data
assimilation in order to reconcile proxy and model data. In
comparison to the MARGO estimate the magnitude of LGM
cooling was larger, for instance the tropical cooling results
being -3.5◦C instead of -1.5◦C. Using the mentioned for- 35

mula and literature values for LGM forcing a mean cooling
of 6.1◦C translates into a best estimate of 3.4◦C in a range
from 2.4-4.5◦C.

Although the LGM reconstruction by Tierney et al. defi-
nitely is a very global one due to its wide range of used prox- 40

ies, proxy data on land has not been considered. One type of
proxy data that serves as a reliable paleothermometer on land
are noble gases. The theory behind the relationship between
temperature at the recharge of groundwater and the solubility
of noble gases like Ne, Ar, Kr and Xe is well established. Fur- 45

thermore noble gases have the advantage of delivering mean-
annual data that not sensible to seasonal sensivity and also
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Figure 7. LGM temperature reconstruction obtained by noble gas
proxies, shown by the green markers in comparison to previous
studies. The samples in the range of the green dash-dotted line
give an average cooling of 5.8±0.6◦C (fluctuating values on the
NH above 35◦ are excluded). The blue curve represents the already
mentioned study by Tierney et al. The red curve represents results
from the early CLIMAP used for the Charney estimate, the orange
curve is from a global reconstruction by Annan and Hargreaves
(2013). The temperatures obtained from the noble gas proxies are
lower than these estimates, but considering that the Tierney study
was based on marine sediments only it can be considered compati-
ble. Noble gases could be used as a valuable proxy in global LGM
reconstructions especially for ground temperatures on land for the
low to mid-latitudes in the future. Taken from Seltzer et al. (2021).

serve as a natural low pass filter because slow signals of a
thousand years in the aquifer temperature are conserved. The
main weakness of noble gases is the difficulty to correctly
date the age of the water.

In order to build a bridge between marine proxy records as5

used by Tierney et al., Seltzer in collaboration with other no-
ble gas experts published an LGM cooling estimate just from
noble gases (Seltzer et al., 2021). The publication served as
an opportunity to gather noble gas data that had not been
published and analyzed on a global scale previously. It uses10

the many advances in noble gas investigations during the last
decades. Models have been developed in order to correctly
assess the relationship between surface temperature and the
aquifer temperature. The study gives a mean LGM cooling
estimate for low-altitude regions on land between 45°S and15

35°N of 5.8±0.6◦C. Figure 7 shows the noble gas tempera-
ture reconstruction in comparison to previous studies. There
is no way to directly translate these land-temperature into sea
surface temperature, because the land-sea contrast during the
LGM is subject to uncertainties, but at least these value can20

be seen as a support for the lower LGM temperatures as in-
ferred by Tierney et al. and thus also support their best esti-
mate for ECS. The purpose of this publication is not to give a
reasonable estimate for ECS but to present noble gas data as a
proxy that could be included in future LGM reconstructions.25

Study Year Proxy data Main result

Annan 2006 Tropical SST P (ECS > 6◦C) < 7%
von Deimling 2006 Tropical SST 1.2− 4.3◦C

Schmittner 2011 Global 1.7− 2.3◦C

Tierney 2020 Global (marine sediments) 2.4− 4.5◦C
Seltzer 2021 Noble gases cooling of 5.8± 0.6◦C on land

Table 1. Main results the studies reviewed in this report. The upper
three studies used the model ensemble approach letting a climate
model run for both doubled CO2 and LGM conditions with per-
turbed parameters. The lower studies rely on assuming that climate
sensitivity can be computed from the energy balance formula 4.

5 Discussion and Conclusion

In this report five studies that aim at enhancing ECS es-
timates with LGM data have been presented. The model
ensemble and the temperature reconstruction approach are
quite different, as in the first climate sensitivity is an emer- 30

gent property and in the latter climate sensitivity is calculated
from estimates on forcing and the LGM cooling. Basics of
statistics that are of great importance in climate sensitivity
studies have been introduced. The central results of the re-
viewed studies are presented in Table 1. Due to the large and 35

fast advances in climate modeling and computation power
the publications with respect to the model ensemble approach
presented here can be considered already outdated, however
I would value their importance as they were the first publica-
tions introducing this novel approach. 40

The noble gas study by Seltzer et al. was presented in order
to demonstrate the further potential of including proxy data
that has not been used in ECS up to now. It is a rather evident
conclusion that more reliable data from the LGM can help
to further constrain ECS. The studies presented here already 45

have demonstrated the capacity of limiting especially the
higher end of ECS. Nonetheless the uncertainties in climate
models are also a crucial point in improving climate sensitiv-
ity estimates. An enlightening publication on the problems
of constraining ECS with data from the LGM was provided 50

by Crucifix (2006). He performed doubled CO2 and LGM
experiments for four different climate models and obtained
climate sensitivities that are rather similar for the LGM but
quite divergent for the doubled CO2 scenarios (see Figure
8). The ECS is hence also strongly dependent on the climate 55

model used. Especially confidence in model components like
clouds and their feedback impacts is not very high, they are
subject to ongoing investigation. Second the study shows that
the inherent climate sensitivity of the earth system does not
necessarily have to be constant throughout time. This means 60

one can not simply estimate ECS with a direct one to one
calculation from the LGM cooling and forcings, or at least
needs to consider additional uncertainties when doing so.
The literature I studied for this report mentions these kinds
of problems and acknowledge the weakness of using just one 65

climate model. Projects like the Coupled Model Intercom-
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Figure 8. Figure taken from Crucifix (2006) showing how the cli-
mate sensitivity parameter varies for different models. The sensi-
tivity parameter for doubled CO2 is displayed on the vertical axis
and the one for LGM on the horizontal axis. According to these re-
sults climate sensitivity is model and climate state dependent. Note
that in this publication the climate sensitivity parameter was defined
inverse to the definition I used in this report.

parison Project (CMIP) will be of great benefit to investigate
which climate models better simulate LGM than others.

This report focused on the LGM as a benchmark period
for estimating ECS, thus showing only a small part of sci-
ence related to climate sensitivity. Paleoclimatolgy offers
many other possible lines of evidence that can be used and5

also combined to that end. In a review paper by Tierney
et al. (2020a) the authors suggested performing model ex-
periments with an epoch like the Eocene 50 million years
ago (CO2 levels similar to today) or climatic aberrations like
the Sturtian snowball earth or the Paleocene-Eocene Thermal10

Maximum (PETM). Whatever period is investigated the need
for bridging the gap between the models and paleoclimate
proxy data is manifest. The importance of intense collabora-
tion between experimentalists and models can not be stressed
enough.15

I would like to close this report by emphasizing that Equi-
librium Climate Sensitivity is not to be confused with Tran-
sient Climate Response, which is the value of interest for
policy making and assessing imminent climate impacts due
to anthropogenic climate change. However, the question of20

survival of human kind should not lower the importance of
investigating climate sensitivity and long-term earth system
feedbacks as they involve many geophysical insights and also
valuable statistical and computational methods.
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